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Abstract 
Examples of wavefront propagation simulation and 

coherence analysis of Self-Amplified Spontaneous 

Emission (SASE), seeded and started-up from noise, are 

presented. The calculations are performed using SRW – 

the wave-optics computer code optimized for Synchrotron 

Radiation (SR), and the 3D FEL simulation code 

GENESIS. To ensure easy inter-operation and data 

exchange between the two codes, GENESIS has been 

integrated into the “emission” part of the SRW, which is 

dedicated for calculation of initial wavefronts in the form 

ready for subsequent propagation simulations. After each 

run of GENESIS in time-dependent mode, the resulting 

electric field is transformed from time to frequency 

domain, and the wavefront obtained this way is 

numerically propagated, using Fourier-optics methods 

implemented in SRW, from the exit of FEL undulator to a 

destination plane of a beamline containing several optical 

elements separated by drift spaces. Interferometer-type 

optical schemes, which allow for “probing” spatial and 

temporal coherence of SASE wavefronts, are used in the 

examples. Intensity distributions of the propagated 

radiation are extracted and analysed in time and 

frequency domains. The presented examples show that 

the SRW code can be used for optimization of optical 

beamlines for 4th
 generation synchrotron radiation 

sources, which require accurate treatment of wave-optical 

phenomena in frequency and time domains. 

INTRODUCTION 

Synchrotron Radiation emitted by relativistic electrons 

in magnetic fields of storage ring sources of the 3rd 

generation is a proven tool for research in many areas of 

science, from physics and chemistry to biology and 

medicine. An outstanding feature of the SR is a very 

broad emission spectrum extending from far infrared to 

hard X-ray range. Besides, undulator-based 3rd 

generation SR sources offer relatively high average 

spectral flux, brightness and degree of spatial coherence 

of the output radiation, and a possibility to use this 

radiation simultaneously for various experiments at a 

large number of beamlines. 

The new emerging sources of the 4th generation – free-

electron lasers and energy-recovery linacs – extend the 

domain of SR applications to time-resolved research, by 

providing femtosecond and, prospectively, even 

attosecond time scale pulses of radiation with extremely 

high peak brightness [1, 2]. 

To fully exploit all great SR features in the 3rd and 4th 

generation sources, high-accuracy simulation tools for the 

processes of emission and wavefront propagation through 

various optical elements of a beamline should be used. In 

the frame of classical electrodynamics, such simulation 

tools, dedicated both for the emission and propagation 

parts, would operate with 3D electric field of radiation 

[3]. Whereas this requirement seems absolutely natural 

for the emission part, it is much less evident for the 

propagation, where simple geometrical optics based 

approximation exists and is extensively (and successfully) 

used for incoherent sources and systems dominated by 

optical aberrations. Nevertheless, with decrease of 

electron beam emittance in storage rings [4] and 

continuous progress in the quality of optical elements [5-

7], the radiation gradually approaches diffraction limit for 

shorter and shorter wavelengths, making physical-optics 

approaches to simulation of wavefront propagation 

increasingly important. 

Two physical-optics based approaches to wavefront 

propagation simulation are currently popular: Fourier 

optics [8] and asymptotic expansions (mainly, the 

stationary phase method) [9, 10]. This paper deals with 

the Fourier optics approach, as it is implemented in the 

SRW computer code [11, 12].  

The following are proven “strong points” of the Fourier 

optics method: 

• very high CPU efficiency; 

• possibility to take into account multiple diffractive/ 

refractive/ reflective optical elements in “uniform” 

way without any increase of the overall complexity; 

• stability in case of “noisy” wavefronts (these methods 

are extensively used for simulation of scattering); 

• availability of large amount of data on electric field 

after only one propagation pass. 

Among “weak points” of this method one can mention:  

- large amount of memory required for “standard” near-

field propagator through free space, and  

- poor accuracy of the “thin” element approximation for 

simulating grazing incidence optics and/or optics with 

very wide angular apertures.  

We note that for the 3rd generation sources, it is often 

enough to simulate wavefront propagation through a 

beamline only in frequency domain – at one central or 

eventually at several different frequencies / photon 

energies. On the other hand, the 4th generation sources 

require a combined frequency- and time-domain analysis 

because of the necessity to preserve (or at least to keep 

track of) temporal characteristics of propagating 

wavefronts. To profit of CPU efficiency of the Fast 

Fourier Transforms (FFT), which are used by the free-

space propagator and at changing the electric field 

representation between the frequency and time domains, 

it is preferable to keep in memory at each step of 
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propagation an entire “instant” wavefront, meshed not 

only vs two transverse coordinates, but also vs frequency 

(or time). This makes the memory constraint even more 

important. In the following sections, we show that despite 

of this constraint, the Fourier optics method can be very 

efficiently used for simulating propagation of time-

dependent SASE wavefronts produced by FELs. 

BRIEF METHOD DESCRIPTION 

Time- and Frequency-Domain Representations 

Time- and frequency-domain complex electric fields 
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where t is time, ω  is cyclic frequency (linked to photon 

energy via the reduced Planck constant ωε h= ), r
r

 is 

observation point. 

Initial SASE wavefronts are often calculated in time 

domain [13]; however, propagation of the electric field in 

free space or in media is described in the frequency 

domain [14]. Besides, it is often necessary to follow the 

evolution of both temporal and spectral characteristics of 

a wavefront at different propagation steps. It is therefore 

important to use an efficient algorithm for Eq. (1). Such 

algorithm can be based on a prime-factor FFT [15], which 

would be applied “in place” to a “flat” (or “C-aligned”) 

complex electric field data structure – for many space 

points r
r

 in parallel.  

Fourier-Optics Propagators  

The propagation of transverse components of the 

frequency-domain electric field in free space is well 

known to be described by the Huygens-Fresnel principle, 

which, for small emission and observation angles is [14]: 
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, and Eq. (2) is a 

convolution-type integral, which can be quickly 

calculated using 2D FFT. 

In practice, direct application of the convolution 

theorem to Eq. (2) for the case of propagation between 

parallel planes may result in the necessity of very dense 

sampling of the electric field vs transverse coordinates x1 

and y1 (and/or x2, y2), because the phase of the field at 

some distance from source depends quadratically on these 

coordinates and all oscillations of the field within given 

wavefront limits must be resolved (otherwise accuracy 

may be lost). There are several possibilities to walk 

around this problem. One consists in distinguishing more 

economic (in terms of sampling) “special cases” of 

propagation, such as propagation to or from waist, when 

Eq. (2) can be reduced to one Fourier transform and 

multiplication of the field by phase factors which depend 

on the transverse coordinates. 

More generally, if approximate values of wavefront 

radii and centres with respect to transverse coordinates 

are known, one can “subtract” the quadratic phase terms 

from the initial wavefront; then, within the quadratic 

phase approximation, Eq. (2) can still be reduced to a 

convolution, with the necessity to re-scale (and eventually 

shift) the resulting wavefront, and add a new (modified) 

quadratic phase term to it. This simple manipulation can 

dramatically reduce the amount of memory required for 

the propagation, while preserving high efficiency and 

accuracy of the Fourier optics method. 

Electric field transformation at propagation from a 

transverse plane before an optical element (e.g. lens, 

mirror, aperture, zone plate, grating,...) to a plane 

immediately after it can be formally represented as: 
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where, in general case, ),,(
22

ωyxG  is a 2x2 matrix 

function of the output transverse coordinates and 

frequency, which can take into account eventual 

anisotropy of the optical element with respect to 

transverse components of the input electric field; the 

optical path function L(x2, y2) and the input/output 

coordinate transformation ),(),,(
221221

yxyyxx  can be 

deduced from geometrical optics, or by applying the 

stationary phase method. We note that for a “thin” optical 

element, Eq. (3) is reduced to simple multiplication of the 

input field by a complex transmission function. 

Wavefront Resizing and Resampling 

Transverse dimensions and/or oscillation rates of 

electric field may strongly vary during the propagation. In 

order to keep the electric field sufficiently well 

dimensioned and resolved at each step of the propagation 

(as required by the propagators being used to simulate 

optical elements and free spaces) and, at the same time, 

stay within reasonable memory consumption, efficient 

mechanisms of wavefront resizing (changing limits) and 

resampling (changing steps of the grid) should be used. 

The resampling can be performed either by using 

interpolation, or by applying FFT and resizing the electric 

field on the Fourier side. E.g., if there is a necessity to 

decrease step of transverse position(s), one can perform 

forward FFT and increase limit(s) by padding zeros on the 

Fourier side, and then perform backwards FFT. At 

manipulations with time-dependent wavefronts, the use of 
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the resizing and resampling procedures is particularly 

important, and it should be used not only to transverse 

coordinates (/angles), but also for time (/frequency). 

APPLICATIONS FOR TIME-DEPENDENT 

SASE WAVEFRONTS 

To illustrate application of the Fourier-optics based 

method, as it is implemented in the SRW code, for 

simulating propagation of time-dependent SASE 

wavefronts, we use two simple interference-type optical 

schemes, one of them being sensitive to spatial, and the 

other one to temporal coherence of an input wavefront. Of 

course, the range of potential applications of the method 

is not limited by these types of optical schemes. 

Two different wavefronts are numerically propagated 

through the optical schemes: (almost fully) saturated 

radiation wavefront obtained at seeded FEL operation and 

a wavefront of unsaturated SASE.  

All calculations described in this section were 

performed on a regular laptop PC with 1 GB of memory 

under 32-bit Windows. In all considered cases, the 

simulation of wavefront propagation took small amount 

of CPU time (in the range of minutes) compared to the 

calculation of initial time-dependent wavefronts. 

Wavefronts at FEL Exit 

The two initial wavefronts were calculated using 

GENESIS (integrated into SRW) for the parameters 

corresponding to the phase 2 of the ArcEnCiel project [16]: 

 

Figure 1: Radiation characteristics at FEL exit for two 

cases: seeded (left) and started up from noise (right). 

electron beam at 1 GeV energy, 1.5 kA peak current, 

60 μm RMS bunch length, 1.2 π mm-mrad normalized 

emittance; planar undulator with 30 mm period and 

deflecting parameter ~2.06, composed out of five 2 m 

long sections. In one case, a seeding radiation pulse of 

50 kW peak power and 22 fs RMS duration, at 100.15 eV 

average photon energy was used (the seed was assumed to 

be produced by the process of generation of high 

harmonics in gas [17]). In the other case, no external seed 

was applied. The results of time-dependent calculations 

(peak power, pulse profile, energy spectrum, 

fluence/intensity distribution at FEL exit) obtained for the 

two cases are presented in Fig. 1. 

Young’s Double-Slit Interferometer 

The Young’s double-slit interferometer scheme, shown 

in Fig. 2, allows one to test transverse coherence of input 

radiation [14].  

 

Figure 2: Double-slit interferometer scheme. 

 

Figure 3: Wavefront characteristics in the image plane of 

double-slit interferometer scheme for two FEL regimes: 

seeded (left) and started up from noise (right). 

Power Density vs Time and Vertical Position (at x = 0) 
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The following parameters of this scheme were used for 

SASE wavefront propagation calculations: 20 m distance 

from the FEL exit to the slits, 1 mm vertical distance 

between the slits, 0.1 mm slit widths, 2.6 m/18 m 

vertical/horizontal focal distance of an astigmatic lens 

(mirror), and 3 m distance from the lens to the image 

plane. The calculation results obtained for the image 

plane in the two wavefront cases (as described above) are 

presented in Fig. 3. One can see that in both cases, the 

visibility of interference fringes, characterizing the degree 

of spatial coherence, is ~1. 

Double-Slit Interferometer with Grating 

A simple scheme for probing temporal coherence can 

be obtained by inserting a grating into the double-slit 

interferometer, just before (or immediately after) the slits 

and the mirror, as shown in Fig. 4.  

 

Figure 4: Double-slit interferometer with grating. 

Simulation results on wavefront propagation to the 

observation plane for the two cases of input SASE are 

illustrated in Fig. 5. At this calculation, the vertical and 

horizontal focal distances of the mirror were 3.7 m and 

100 m; the observation plane was at ~3.8 m from the 

mirror. The grating was assumed to be flat, with groove 

density of 150 l/mm; the incidence angle ~2.5° (in 

vertical plane). 

We see from Fig. 5 that for both wavefront cases, the 

interference patterns are strongly modified by the grating. 

Vertical positions of interference peaks depend now on 

photon energy (see upper image plots), and this reduces 

the visibility of fringes in the resulting frequency- (or 

time-) integrated patterns. As one can see from the graphs, 

the poor visibility of fringes in the seeded case has also 

simple time-domain interpretation: because of the delay 

introduced by the grating, the radiation pulses from the 

two slits almost don’t overlap in time.  

We note that in the case of SASE started from noise, 

the interference pattern depends on pulse micro-structure 

(having stochastic origin) and can therefore appear further 

“smoothed-out” after averaging over ensemble of pulses. 

The corresponding analysis can be easily performed using 

the described methods. 
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