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Abstract

We present a description of free-electron laser (FEL) ra-
diation in the high-gain, small-signal regime through an ex-
pansion of eigenmodes of a virtual dielectric waveguide.
A set of coupled differential equations is derived for the
slowly-varying mode expansion coefficients and the elec-
tron beam density modulation amplitudes. The equations
are decoupled into an algebraic matrix equation for solu-
tions of the self-similar FEL supermodes that propagate
with a self-similar profile. For a suitable choice of the form
of the virtual dielectric, this virtual dielectric waveguide
expansion (VDE) approach has the advantage of describing
gain-guided FEL radiation over many Rayleigh lengths in
terms of a basis that parallels the standard gaussian modes
of free-space paraxial optics.

INTRODUCTION

The optical guiding of light in free-electron lasers
(FELs) is a well-known phenomena that results during am-
plification as the coherent interaction between the electron
beam (e-beam) and the electromagnetic (em) field intro-
duces an inward curvature in the phase front of the light, re-
fracting it back towards the lasing core of the e-beam[1, 2].
During the exponential gain process the e-beam can be-
have like a guiding structure that suppresses diffraction, re-
ducing transverse power losses and enhancing the em field
amplification (gain-guiding). The guided em field eventu-
ally settles into a propagating, self-similar eigenmode of
the FEL system (supermode) with a fixed transverse profile
distribution and spot size[3, 4].
Guided modes have been previously explored analyt-

ically by direct derivation of the eigenmode equations
from the coupled Maxwell-Vlasov equations[3, 5, 6], and
through expansions of the FEL signal fields in terms of hol-
low, conducting-boundary waveguide eigenmodes[4], step-
index fiber modes[2], and free-space paraxial waves[7, 8].
Since, in an FEL, the e-beam operates simultaneously as
an optical source and as a wave-guiding structure, an em
mode description permits investigation of the coupling ef-
ficiency and guiding characteristics of individual modes
to the e-beam. Of particular interest is the coupling to
the well-known Hermite-Gaussian or Laguerre-Gaussian
modes that describe free-space waves in the paraxial limit.
The propagation and guiding of these modes over many
Rayleigh lengths in an FEL interaction can be investigated
directly by an expansion of the radiation field in terms of
guided eigenmodes that have the form of paraxial modes
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evaluated at the waist. This connection is useful both in
characterizing the free-space propagating radiation fields
emitted from the FEL, but also in understanding input radi-
ation coupling, as in the case of seed radiation injection.

FIELD EXPANSION AND MODE
EXCITATION IN AWAVEGUIDE

In a structure of axial translational symmetry, the radia-
tion fields can be expanded in terms of transverse radiation
modes with amplitudes that vary only as a function of the
symmetry axis, z. Neglecting backward propagating waves
and approximating the fields as dominantly transverse, the
radiation field expansion in terms of waveguide modes is,

Ẽ⊥(r) =
∑

q

Cq(z)Ẽ⊥q(r⊥)eikzqz

H̃⊥(r) =
∑

q

Cq(z)H̃⊥q(r⊥)eikzqz. (1)

where H̃⊥q = (1/Zq)êz × Ẽ⊥q, kzq is the qth mode axial

wavenumber, and Zq = (k/kzq)
√

μ0/ε0 for TE modes.
The modes are orthogonal and normalized to

Pq =
1
2
Re

[ ∫ ∫
[Ẽ⊥q(r⊥)× H̃∗

⊥q(r⊥)] · êzd2r⊥
]
. (2)

The mode Ẽ⊥q is an eigenmode of a dielectric medium with
transverse variation in the refractive index n(r⊥). Assum-
ing∇n2 � k, the eigenmode equation is

∇2
⊥Ẽ⊥q(r⊥) + [n(r⊥)2k2 − k2

zq]Ẽ⊥q(r⊥) = 0 (3)

where k = ω/c. With equations (1) and (3) and under
the paraxial approximation (|d2Cq/dz2| � |k2Cq|) for the
slowly-growing coefficients, the excitation equation for the
mode q in the presence of a source current is given by,

d

dz
Cq(z) = − 1

4Pq
e−ikzqz

∫ ∫
J̃⊥(r) · Ẽ∗⊥q(r⊥)d2r⊥

−i
∑
q′

Cq′(z)e−iΔkzqq′zκd
q,q′ (4)

where

κd
q,q′ =

ωε0
4Pq

∫ ∫
[n(r⊥)2 − 1]Ẽ⊥q′(r⊥) · Ẽ∗⊥q(r⊥)d2r⊥

(5)
and Δkzqq′ = kzq − kzq′ is the difference between the
axial wavenumbers of the modes q and q′. The term κd

q,q′

characterizes the mode coupling and represents the virtual
polarization currents and charges that must be subtracted
when using eigenmodes of a dielectric waveguide, since no
such structure exists in the physical system.

A DESCRIPTION OF GUIDED FEL RADIATIONWITH
EIGENMODESDIELECTRIC WAVEGUIDE
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ELECTRON BEAM FLUID MODEL AND
COUPLED EXCITATION EQUATIONS

A linear plasma fluid model for a cold e-beam (negli-
gible energy spread) can be used to describe the small-
signal excitation in an FEL interaction[4]. A relativis-
tic e-beam in an FEL experiences transverse oscillations
driven by an interaction with a periodic structure. This
motion drives an axial ponderomotive force that modulates
the axial electron velocity such that, to first-order, the ax-
ial velocity of a cold beam within a static undulator can
be expanded as vz(r, t) = vz0 + Re[ṽz1(r)e−iωt] where
vz0 = βzc is the d.c. component and ṽz1 is the per-
turbation oscillating at signal frequency ω. Longitudinal
variations in the velocity like the half-frequency modula-
tion found in planar undulator systems are ignored here.
The velocity modulation ṽz1 develops a density bunching
modulation that is similarly described in a linear model
as n(r, t) = n0(r⊥) + Re[ñ1(r)e−iωt] where n0(r⊥) is
the transverse density profile of the e-beam. The a.c.
component of the longitudinal current density results from
both the axial velocity and density perturbations and is
J̃z1(r) = −e[n0(r⊥)ṽz1(r) + vz0ñ1(r)]. If the transverse
divergence of the current perturbation is assumed small
∇⊥ · J̃⊥1 � ∂J̃z1/∂z, the continuity equation can be writ-
ten as dJ̃z1/dz = −iωeñ1(r). The transverse component
of the current density that excites the signal wave is written
in terms of the density perturbation as

J̃⊥(r) = −1
2
eñ1(r)ṽ⊥we−ikwz. (6)

where ṽ⊥w is the transverse velocity vector and kw is the
axial wavenumber of the periodic undulator lattice.
From the expressions for the current density and the rel-

ativistic force equation for the axial velocity perturbation,
the density bunching can be expressed as a second order
differential equation[4]. It is useful to define the density
bunching parameter

ĩq(z) =
e

8Pq
e−i ω

vz0
z
∫ ∫

ñ1(r)ṽ⊥w ·Ẽ
∗
⊥q(r⊥)d2r⊥. (7)

By combining the density modulation equation from Ref
[4] with Eqs (4) and (7) we obtain a coupled form for the
mode excitation evolution equations:

d

dz
Cq(z) = ĩq(z)eiθqz − i

∑
q′

κd
q,q′Cq′(z)e−iΔkz;qq′z

[ d2

dz2
+ θ2

pr

]̃
iq(z) = i

∑
q′

Qq,q′Cq′(z)e−iθq′z (8)

where θq = ω/vz0 − (kzq + kw) is the characteristic de-
tuning parameter for a given mode. The coupling between
the e-beam with transverse density distribution function
f(r⊥) and the FEL radiation field is given by the parameter

Qq,q′ = θ2
pκq,q′ in Eq (8) where θ2

p = e2n0/γγ2
z ε0mev

2
z0

and the e-beam mode-coupling coefficient κq,q′ is

κq,q′ =
ε0

8Pq
(kzq + kw)

∫ ∫
f(r⊥)Ẽpm,q′ ṽw

⊥ · Ẽ
∗
⊥qd

2r⊥.

(9)
The radiation field and the undulator field are assumed to
be polarization matched. The axial ponderomotive field is
Ẽpm,q(r⊥) = 1

2 [ṽ⊥q × B̃∗⊥w + ṽ∗⊥w × B̃⊥q] · êz where
ṽ⊥q is the transverse electron velocity due to the Lorentz
force of the qth mode of the signal field, B̃⊥w is the trans-
verse magnetic field of the undulator, ṽ⊥w is the transverse
velocity due to the undulator field and B̃⊥q = μ0H̃⊥q.
The term JJ = [J0(α) − J1(α)]2 can be included in
the coupling parameter κq,q′ for a strong planar undula-
tor (JJ = 1 for a helical undulator geometry), where
J0 and J1 are the first and second order Bessel functions
and α = ωcK2/(8γ2v2

z0kw) where K = e|B̃⊥w|/mckw

is the undulator parameter. The relativistic factor is γ =
γz

√
1 + K2/2 with γ2

z = 1/(1 − β2
z ). The effect of

the longitudinal space-charge in the beam is represented
by the finite-width beam parameter θpr = r̄θp where
θp = ωp0/vz0 is the longitudinal space-charge parameter
(plasma wavenumber) of a uniformly distributed electron
beam profile used in a 1D model. The plasma reduction
factor satisfies |r̄| ≤ 1, and can be calculated numeri-
cally for a specific e-beam geometry[7]. In the limit that
λβz � r0 where r0 is the e-beam radius, one can make the
approximation r̄ � 1.
The first equation in Eqs (8) describes the excitation of

the mode amplitude Cq of a virtual dielectric waveguide
eigenmode due to the density perturbation and transverse
wiggling motion of the electrons throughout the FEL inter-
action. The second equation in (8) highlights the evolution
of the modal density bunching parameters through the e-
beam coupling to the expansion modes.
The initial conditions for Eqs (8) specify the operating

characteristic of the FEL. For example, when operating as
a single-pass amplifier (seeded FEL) there is no initial den-
sity and velocity modulation ĩq(0), d̃iq(z)/dz|z=0 = 0 and
the initial seed field is non-zero Cq(0) �= 0. Alternately,
for a self-amplified spontaneous emission FEL (SASE), the
amplified shot noise can be related to the pre-bunching con-
ditions ĩq(0) �= 0, d̃iq(z)/dz|z=0 = 0 and the input signal
field vanishes Cq(0) = 0.

SUPERMODE MATRIX SOLUTION

In the high-gain regime of an FEL the radiation field is
optically guided towards the beam axis. After a sufficiently
long interaction length, prior to the onset of saturation, a
balance is reached between the natural diffraction effects of
the radiation and the focusing effects of the gain-guiding.
The FEL settles into a period of steady exponential growth,
characterized by a radiation field profile that propagates
self-similarly which can be descried by a specific, fixed
combination of expansion modes called the supermode. In
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order to find the system supermodes, it is enough to find
the characteristic solutions to Eq (8). These are the combi-
nations of expansion modes that propagate with a distinct
wavenumber kSM , and can be found by looking for a solu-
tion of the form

ẼSM (r) =
[ ∑

q

bq Ẽq(r⊥)
]
eikSM z (10)

where the mode amplitude coefficients bq are constants and
the z-dependence is contained solely in the exponential
term. The excitation equations for this supermode expan-
sion can be found by transforming the mode amplitude co-
efficents Cq(z) via:

Cq(z) = bqe
i(kSM−kq)z. (11)

Plugging this expression into the coupled excitation evo-
lution equations (8), a single equation is obtained for the
supermode coefficients:

(θ2
pr−θ2

SM )
[
(kSM−kzq)bq+

∑
q′

κd
q,q′bq′

]
=

∑
q′

Qq,q′bq′ ,

(12)
where θSM = θ + k − kSM is the supermode detuning
parameter, and θ is the detuning parameter for a 1D model
(kzq = k). Since we anticipate that the supermode propa-
gates with a slightly modified axial wavenumber from that
of free-space, we define kSM = k + δk and Eq (12) can be
written in matrix form[[

(δk − θ)2 − θ2
pr

]
[Iδk + κd −Δk] + Q

]
b = 0 (13)

where Δk is diagonal with matrix elements given by
Δkq = kzq − k.
Solutions to the determinant equation |[(δk − θ)2 −

θ2
pr][Iδk + κd −Δk] + Q| = 0 result in 3N solutions for

δk, where N is the number of expansion modes. Each δk
can then be inserted in Eq (13) to find a non-trivial solu-
tion (if one exists) for the mode amplitude vector b, the
components of which are the expansion coefficients of a
supermode of the FEL system. From Eq (10) and the def-
inition of kSM it can be seen that the solution for δk with
the largest imaginary component drives the highest gain,
and dominates over the rest of the supermodes. This value,
δkSM , used in solving Eq (13) will yield the coefficients of
the dominant supermode.
We note that when Δk, κd = 0, as in the case of an ex-

pansion into a free-space mode basis, the matrix equation
in (13) reduces to a generalized matrix form of the canon-
ical FEL cubic equation. Further, in the limit of a large
transverse beam profile, Qq,q′ → Q and Eq (13) is the fa-
miliar 1D FEL cubic equation for the mode independent
beam coupling parameter Q.

LAGUERRE-GAUSSIAN MODE
EXPANSION

The choice of the refractive index in Eq (3) determines
the form of the basis expansion used in the excitation

equations (8). For quadratic refractive index of the form
n2(r⊥) = n2

0[1 − 2Δ(r/a)2] with Δ � 1, the constituent
VDE expansion basis consists of a complete, orthogonal set
of either Hermite-Gaussian (HG)[9] or Laguerre-Gaussian
(LG) functions[10]. Since both HG and LG modes also oc-
cur as solutions to the paraxial wave equation, this choice
for the refractive index identifies a connection between the
VDE method and a description of the FEL system using
paraxial, diffracting modes of free-space. The intrinsic ad-
vantage of the guided mode expansion formalism is the
ability to efficiently model the signal field during high-gain
over many Rayleigh lengths with only a few modes.

For geometries that are largely axisymmetric over the in-
teraction length, LG modes provide a convenient working
basis to model the FEL radiation. They have the form

Ẽ⊥;p,l(r, φ) ∝ e−ilφe
− r2

w2
0

(r
√

2
w0

)|l|
L|l|

p

(2r2

w2
0

)
(14)

whereLl
p is an Associated Laguerre polynomial. The mode

index q takes on two values (p, l) corresponding to the ra-
dial and azimuthal mode numbers, respectively. The argu-
ment of the LG polynomials contain the parameter defined
asw2

0 ≡ 2a/kn0

√
2Δwhich sets a characteristic waist size

in terms of the refractive index parameters.The field modes
in Eq (14) are thus identical to free-space LG fields that sat-
isfy the paraxial wave equation, when the free-space modes
are evaluated at the waist. This waist definition specifies a
characteristic dielectric profile form for a quadratic dielec-
tric, in which a free-space Laguerre-Gaussian mode with
waist size w0 will propagate as a guided eigenmode.

It is noted that the LG modes of Eqn (14), as well as
those of a free-space system, possess an axial field com-
ponent for both the electric and magnetic fields for modes
with |l| > 0. The magnitude of the axial electric field com-
ponent is on the order of λ/w0 by comparison to the princi-
ple transverse component, and can be neglected, validating
the approximation made in deriving the amplitude evolu-
tion equation (4)[11].

It is instructive to cast the associated Rayleigh range for
a free-space paraxial wave in terms of the dielectric param-
eters zR = kw2

0/2 ≡ a/n0

√
2Δ, which yields a refrac-

tive index n2(r) = n2
0 − (r/zR)2. The axial wavenumber

kzq = kz;p,l is given by

k2
z;p,l = k2n2

0 −
4

w2
0

(2p + l + 1). (15)

The refractive index on axis can be taken as n2
0 � 1 and the

FEL signal field can be expanded into a sum of LG guided
modes given by Eq (14), each with wavenumber kz;p,l. The
expansion waist w0 is arbitrary, but can be chosen to be
on the order of the e-beam size to facilitate efficiency in
modeling the beam evolution with a finite number of modes
included in the expansion[12].
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Figure 1: Left: Numerically modeled evolution of the radiation spot size throughout undulator for VISA FEL at λ =
1064nm for θ = 0 detuning. Three spot sizes (ws0 = 2r0, 3r0, and 4r0) for a P = 0.1μW gaussian seed are introduced
at the undulator entrance with a r0 = 115μm gaussian e-beam f(r) = e−r2/r2

0 . During the start-up period early on, the
seed beam diffracts briefly until exponential gain develops. The self-focusing effects then guide the beam toward a fixed
spot size, characteristic of the FEL supermode. Inset: Normalized field intensity (solid) and phase (dashed) profiles of
supermode. Right: Normalized differential radiation power evolution for each input seed. The power slope for each input
spot size evolves towards the same value after the supermode is established halfway through the 4 m VISA undulator.

SIMULATIONS

Results generated by the VDE method that uses an LG
mode expansion basis to model the Visible to Infrared
SASE or Seeded Amplifier (VISA) FEL currently in op-
eration at Brookhaven National Laboratory are shown in
Figure 1. The VISA FEL is ideal for investigations using
an LG expansion since it has generated both hollow and
spiral transverse em intensity patterns that are suggestive
of single or multiply interfering LG modes[13]. The results
in Figure 1 show the evolution of various injected radiation
fields towards the supermode, both in the transverse spot
sizes (left) and in the differential power curves (right) as a
function of the longitudinal coordinate. Both the inwardly
curved phase front (dashed line – inset) and the “pinched
gaussian” intensity profile (solid line – inset) of the radi-
ation at the undulator exit (z=4 m) display the signature
characteristics of a gain-guided FEL supermode.

CONCLUSIONS

We have presented a description of the FEL electromag-
netic signal field during high-gain through an expansion
into a complete set of eigenmodes of a virtual dielectric
waveguide. The FEL supermode can be found in the small-
signal limit by finding the eigenfunction solutions to the
coupled mode excitation equations derived from a cold e-
beam fluid model. The choice of a quadratic index medium
for the virtual dielectric yields a set of guided Hermite-
Gaussian or Laguerre-Gaussian modes that relate to parax-
ial modes of free-space. Future work will involve compar-
isons of the VDE formulation with 1) experiments at VISA,
where plans are underway to measure the phase and mode
content of the em radiation[14] and, 2) numerical simula-

tions using GENESIS 1.3 to verify and support the analytic
and experimental results. The coupling to higher-order ra-
dial and azimuthal modes will also be investigated.
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