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Abstract

Tapering the undulator parameter is a well-known
method for maintaining the resonant condition past satura-
tion, and increasing Free Electron Laser (FEL) efficiency.
In this paper, we demonstrate that shifting the electron
bunch phase relative to the radiation is equivalent to taper-
ing the undulator parameter. Using discrete phase changes
derived from optimized undulator tapers for the Linac Co-
herent Light Source (LCLS) x-ray FEL, we show that ap-
propriate phase shifts between undulator sections can re-
produce the power enhancement of undulator tapers. Phase
shifters are relatively easy to implement and operate, and
could be used to aid or replace undulator tapers in optimiz-
ing FEL performance.

INTRODUCTION

Despite the projected six orders of magnitude increase
in peak power for Self-Amplified Spontaneous Emission
(SASE) x-ray FELs, some applications, including single
molecule imaging, may require still higher photon flux [1].
To increase the power in higher harmonics, it is possible to
shift the FEL electron phase relative to the radiation, sup-
pressing the power in the fundamental wavelength and pro-
longing growth of the harmonics [2]. We have studied the
related use of phase shifts to correct slippage at saturation
and boost the power output of the fundamental wavelength.
Similar methods have been mentioned in the past in con-
nection with harmonic radiation [2] and numerical simula-
tions [3]. Here we undertake a detailed analytical and nu-
merical study of enhancing FEL power with phase shifters.
We explore the relation between phase shifts and undula-
tor tapers to calculate optimal phase shifts for SASE FELs
in the saturation regime. The phase shift method, while
equivalent to tapering the undulator parameter, provide an
independent knob to maximize the FEL performance.

ONE-DIMENSIONAL ANALYSIS

The resonant condition

λ1 = λu
1 + K2/2

2γ2
0

(1)

sets the radiation wavelength, λ1 for an FEL; after each
undulator period, λu, the electron bunch slips behind the
radiation by exactly λ1. It follows that when the resonant
condition holds, the phase, Ψ, between the electron bunch
and radiation stays constant (up to 2π). Near saturation,
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the bunch loses significant energy to the radiation, and the
FEL resonant condition begins to fail. As γ0 → γ < γ0,
the resonant wavelength increases, and the electrons slip
more than one radiation wavelength during each undula-
tor period. Introducing a phase shift (by means of a small
chicane) can correct for the increase in slippage by shift-
ing the bunch backwards into the previous bucket. (If, over
many undulator periods, the bunch has accumulated extra
slippage of Δθ, then the chicane shifts the electrons an ad-
ditional 2π − Δθ. There is no easy way to shift electrons
forward.) After the shift, the electron bunch is once again
in phase with the radiation, preserving the resonant condi-
tion farther into saturation.

To show that compensating for the additional slippage
can optimize the radiation power in the undulator, we use a
simplified 1-D FEL model and neglect the effect of detun-
ing. The slowly varying radiation field ã is given by

dã

dz̄
= −〈e−iθj 〉 . (2)

The phases, θ ≡ (k + ku)z−ωt + const, are the longitudi-
nal positions of the electrons relative to the electron bunch
given in units of λ1/2π = 1/ku. The variable z̄ ≡ 2kuρz,
is the scaled position along the undulator. Here ρ is the di-
mensionless FEL parameter [4]. Finally, the average in Eq.
(2) is taken over all electrons. Taking ã ≡ Ae iΨ, with Ψ
the phase of the radiation relative to the electron bunch, we
can separate out the magnitude and phase components of
the radiation field:

dã

dz̄
= eiΨ

[
dA

dz̄
+ iA

dΨ
dz̄

]
. (3)

Inserting Eq. (3) into Eq. (2) and separating real and imag-
inary parts gives

dA

dz̄
=− 〈cos(θj + Ψ)〉 , (4)

dΨ
dz̄

=
1
A
〈sin(θj + Ψ)〉 . (5)

Our strategy is to maximize A by introducing an arbi-
trary phase shift, φ between the radiation and electrons, and
then maximize dA

dz̄ with respect to φ at all points along the
undulator. (A chicane delays all particles relative to the ra-
diation, introducing an arbitrary change in relative phase of
the bunch.) Our goal, then, is to choose φ to maximize the
quantity−〈cos(θj + Ψ + φ)〉.

Adding the arbitrary phase, φ, gives

dA

dz̄
= 〈cos(θj + Ψ)〉 cos(φ)− 〈sin(θj + Ψ)〉 sin(φ) (6)
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To find the optimal phase shift, we differentiate with re-
spect to φ to find

φmax(z̄) = arctan
[
−〈sin(θj + Ψ)〉
〈cos(θj + Ψ)〉

]
. (7)

Carrying out the maximization then requires the calculation
of φmax(z̄) at all points past saturation along the undulator.
(φ is a function of z̄, because θj and Ψ are also functions
of z̄.)

Substituting the result from Eq. (7) into Eq. (6) we find,
for 〈cos(θj + Ψ)〉 > 0,(

dA

dz̄

)
max

=
√
〈cos(θj + Ψ)〉2 + 〈sin(θj + Ψ)〉2 ≡ |b| ,

(8)
where b is the bunching factor of the electrons.

We originally motivated the phase shift by the need to
maintain a constant Ψ, the phase between the electron
bunch and the radiation. We would like to check that our
best phase, φmax, optimized to increase the radiation am-
plitude, A, will simultaneously keep Ψ fixed. Returning to
Eq. (5), now with an arbitrary phase inserted, we have

dΨ
dz̄

∝ 〈sin(θj + Ψ)〉 cosφ + 〈cos(θj + Ψ)〉 sin φ . (9)

Plugging in φmax from the optimization condition, Eq. (7),
gives

dΨ
dz̄

∝〈sin(θj + Ψ)〉 − 〈cos(θj + Ψ)〉 〈sin(θj + Ψ)〉
〈cos(θj + Ψ)〉

= 0 . (10)

We find that implementing the phase shifts, φmax, does in-
deed keep the phase, Ψ, fixed, consistent with our initial
goal of maintaining the correct slippage length.

EQUIVALENCY TO UNDULATOR TAPER

To find the optimal phases, Eq. (7), we can numeri-
cally evaluate 〈sin(θj + Ψ)〉 and 〈cos(θj + Ψ)〉 at each
desired phase shifter location. This, of course, is not very
practical for an actual SASE FEL. However, we motivated
this approach by the need to maintain the resonant condi-
tion (Eq.1). Tapering the undulator, an established method
for optimizing FELs, works through the same principle [5].
From the resonant condition, we see that shifting the phase
is equivalent to decreasing the undulator parameter. To ex-
press a phase shift in terms of a taper, we start with the
ponderomotive phase equation

dθ

dz̄
= ku − k1

[1 + K2/2]
2γ2

. (11)

relating the change in phase, φ = Δθ, to the undula-
tor parameter, K . An undulator taper is a small shift
K0 → K(z̄). Plugging into Eq. (11), dropping the sec-
ond order term, and using the resonant condition, ku/k1 =

(1 + K2
0/2)/(2γ2

r ) gives

dθ

dz̄
= ku − ku

γ2
r

γ2
+ ku

γ2
r

γ2

K0(K(z̄)−K0)
1 + K2

0/2
. (12)

Using the notation η = (γ − γr)/γr, |η| � 1 yields the
usual FEL phase equation with a correction term of order
K0 −K(z̄):

dθ

dz̄
= 2ku

[
η − K0(K0 −K(z̄))

2 + K2
0

]
. (13)

Thus we find a change, K0 → K(z̄), results in a change,
θ → θ + Δθ, with accumulated phase shift

Δθ(z̄) = −2ku

∫ z̄

z̄0

K0(K0 −K(z̄′))
2 + K2

0

dz̄′ (14)

where K(z̄) is some arbitrary function (i.e. an optimized
taper) and the integral starts from the last phase shift at
position z̄0.

The advantage of deriving phase shifts in this manner is
that SASE FEL undulator tapers are well understood, and
the optimal function K(z̄) can be calculated from the FEL
parameters, for instance by the GINGER self-taper algo-
rithm [6]. With a predetermined taper function, we can
plug into Eq. (14) and calculate the optimal phase shifts
for an arbitrary FEL.

We have shown that shifting the phase continuously is
identical to tapering the undulator parameter. However, the
phase shift is most interesting if implemented discretely,
with the taper from each undulator section replaced by
a single shift. In this case, the exact equivalence breaks
down. The larger the shift, the more time the FEL spends
at a suboptimal phase, and for long undulators the accu-
mulated difference K(z̄ ′) −K0 might require large phase
shifts, Δθ(Lu), near the end of the undulator (Eq. 14). To
determine the practicality of discrete shifts, we use FEL pa-
rameters similar to the LCLS at 1.5 Å [7] for numerical ex-
amples (Table 1). Although LCLS does not currently have
periodic phase shifters, designs for similar projects such as
the European XFELs [8] have incorporated phase shifters
between undulator sections. Using Eq. (14), we find the
taper-equivalent shifts for LCLS have Δθ < 1, suggesting
that the method of phase shifts will match the performance
of an undulator taper.

Table 1: SASE Simulation Parameters
Radiation wavelength (λ1) 1.5 Å
Bunch current 3.4 kA
Undulator period (λu) 3 cm
Undulator parameter (K) 3.5
Electron energy 13.6 GeV
Relative RMS energy spread 1x10−4

Normalized transverse emittance 1.2 μm
Beta function 25 m
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NUMERICAL RESULTS

1-D Simulations

To simulate phase shifts, we started with a 1-D FEL
code, including energy spread but not emittance effects.
We used four different types of optimization:

1. Phase scan,

2. Numerically optimized phase shifts,

3. Linear energy taper, and

4. Phase shifts derived from a linear taper.

First we used a brute force phase scan. To determine the
nth phase shift at position zn, we optimized the power at
position zn+1 by trying 5 (or more) different phase shifts.
Then, picking the best phase for the nth position, we opti-
mized position zn+1.

Second, we used the results from Eq. (7) to calculate op-
timal phase shifts numerically. We calculate the phase for
2 cases: shifts every 1m and every 3m. The 3m shifts are
less effective than the phase scan because the shifts are in-
frequent, and Δθ > 1. The results for the first two methods
are given in Fig. 1.

45 50 55 60 65 70 75 80

109

1010

1011

z (m)

�P
� (

W
)

Phase Boost (Seeded Case)

 

 

Numerical phase 3m
No shift
Numerical phase 1m
Phase Scan 1m

Figure 1: Fundamental radiation power from phase shifts.
Phases done 3 ways: Numerical optimization every 1m
(dark green), Numerical optimization every 3m (light
green), Phase scan every 1m (red). The fourth plot (blue)
has no phase shifts.

Third, we used a linear taper to boost the fundamental
power. Fourth, we calculated the taper-equivalent phase
shifts (Eq. (14)), implemented every 1m. The final
two methods are computationally identical if the phase is
shifted on each iteration. However, the results still match
for less frequent phase shifts, so long as the shifts are small
(Δθ < 1). Results for both seeded and SASE cases are
given in Figs. 2 and 3. Performance is worse for the third
harmonic (green), because the shifts are relatively larger
than in the case of the fundamental.
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Figure 2: Comparison of taper and equivalent phase shifts
every 3m for Seeded FEL, 1-D simulation.
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Figure 3: Comparison of taper and equivalent phase shifts
every 3m for SASE FEL, 1-D simulation.

Finally, we compare phase shifts derived from the op-
timal linear taper to numerically optimized phase shifts
(Eq. (7)), and the results from the phase scan. The phase
shifts are all well matched (Fig. 4), confirming the equiva-
lence of the four optimization methods.

3-D Simulations

We repeated the same study using the FEL code GIN-
GER. To find an optimal undulator taper, ΔK(z), we used
GINGER’s self-taper algorithm [6]. With η defined above

dη

dz
= − 1

γ0

dγr

dz
− eK[JJ ]

2γ2
0mc2

E sin(θ + Ψ)

When the energy change is small (in the exponential
regime), we can ignore the dγr

dz term. However, at satu-
ration, the energy loss is significant (of order ρ), and the
resonant energy γr changes. Following [5], we define a
synchronous phase Ψr from

− 1
γ0

dγr

dz
≡ eK[JJ ]

2γ2
0mc2

E sin(Ψr).
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Figure 4: Phases determined by phase scan, numerical op-
timization and taper equivalent (Seeded case).

with Ψr determined by both dγr

dz and K . Any particle with
the synchronous phase will then define the center of the
bucket, with particles nearby in phase space performing a
synchrotron oscillation around the synchronous phase. (By
definition, the energy η is constant.) An optimal phase Ψ r

is determined by optimizing bucket size and dγr/dz, which
together set the energy transferred from electrons to radia-
tion. We can then find a function K(z) to maintain the
phase Ψr as a constant throughout the saturation regime.
Alternatively, we can manipulate the phase directly through
periodic phase jumps, as described in Eq. (14) above. If
the phase jumps are frequent enough so that Δθ < 1 (or
equivalently, ΔΨ), the system will effectively maintain the
resonant condition without resorting to altering K.

Using GINGER’s self-design taper function we created
an optimal taper and then found the equivalent phase shifts
(Fig. 5). We confirm the 1-D results, showing an equiv-
alence between a taper and phase shift for an LCLS-like
SASE FEL (Fig. 6, Table 1). The equivalence starts to fail
at the very end of the undulator, when Δθ > 1.
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Figure 5: Taper for Seeded and SASE cases. Simulation
using GINGER’s 3D code.
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Figure 6: Power for normal (black), tapered (red) and
phase-shifted (blue) LCLS-like SASE FEL, 3-D simula-
tion. 12 Phase shifts between undulator sections (3.8 m).

CONCLUSION

We demonstrate the equivalence between phase shifts
and undulator tapers. If the required phase shifts are small
(Δθ < 1), then the shifts can be implemented discretely
and still mimic the effect of an undulator taper. In particu-
lar, we simulate phase shifts placed between undulator sec-
tions for an x-ray FEL and find the results are equivalent to
those of an optimized taper. The phase shift method could
be useful as a replacement or enhancement of undulator
tapers when the use of tapers is constrained by technical is-
sues. Even when the undulator parameter of each undulator
section can be individually adjusted, placing phase shifters
between the undulator sections provides independent con-
trol and fine tuning capability over the FEL power.
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