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Abstract

The method of enhanced self-amplified spontaneous emis-
sion (eSASE) is one of the strongest candidates for the gen-
eration of sub-femtosecond X-ray pulses in a free-electron
laser. The optimization of an eSASE experiment involves
many independent parameters, which makes the exploration
of the parameter space with 3-D simulations computation-
ally intensive. Therefore, a robust theoretical analysis of this
problem is extremely desirable. We provide a self-consistent,
analytical treatment of such a configuration using a one-
dimensional, time-dependent FEL model that includes the
key effects of linear e-beam chirp and linear undulator ta-
per. Verified via comparison with numerical simulation, our
formalism is also utilized in parameter studies that seek to
determine the optimum setup of the FEL.

INTRODUCTION

Because of their attractiveness to users, the generation
of ultrashort X-ray pulses is one of the main objectives of
research into advanced operation modes in a modern FEL
facility. One of the more prominent schemes for generat-
ing sub-fs X-rays in an FEL is eSASE [1] (enhanced Self-
Amplified Spontaneous Emission). This technique involves
the interaction of an electron beam with an optical laser
pulse in the presence of a short wiggler, prior to the beam
being sent into a conventional undulator. This process re-
lies on some intense manipulation of the longitudinal phase
space of the e-beam, after which the strongly chirped beam
typically has to travel through a tapered undulator in order
to achieve lasing with the required properties. Apart from a
significant improvement in the performance of the FEL, this
method provides an attractive scheme for generating X-ray
pulses in the attosecond range.
In this paper, we provide an self-consistent, analytical

treatment of such a configuration using a simple, one-
dimensional (1D) FEL model that includes the effects of
startup from noise (SASE), slippage, electron beam chirp
(linear and nonlinear) and undulator taper. 3D effects such
as radiation diffraction, emittance and focusing are excluded.
This allows us to calculate various key properties of the FEL
radiation in the latter stage of the exponential gain regime.
After verifying its validity through comparison with the
output of a 1D FEL simulation code, our analysis is also
utilized in parameter studies that seek to determine the op-
timum setup of the FEL. This enables us to obtain a more
thorough understanding of the physics behind the experi-
mental method.

1D FEL ANALYSIS
In this section, we outline the main results of our theoreti-

cal analysis, leaving the details of the derivation for another
publication. In the context of our model, the main properties
of the radiation can be extracted from a slowly-varying com-
plex amplitude a(θ, z), which can be related to the actual elec-
tric field through the relation Erad = a(θ, z)eikr (z−ct)/2+ c.c.
Here, kr = 2π/λr is the radiation wave number and θ =
kuz + kr (z − ct) is the ponderomotive phase (ku = 2π/λu ,
where λu is the undulator period). The θ variable also sat-
isfies the relation θ = kr s, where s is an internal bunch
coordinate. The main FEL parameters satisfy the resonance
condition λr = λu(1 + K2

0/2)/(2γ
2
0), where λr is the radia-

tion wavelength, K0 is the (initial) undulator parameter and
γ0 is the average relativistic factor of the beam. The longitu-
dinal phase space coordinates are (θ, η), where η = γ/γ0 − 1
is the energy deviation variable.

As far as the key properties of the e-beam are concerned,
we assume that the current is given by I(θ) = I0 χ(θ), where
0 ≤ χ(θ) ≤ 1 is a scaled profile and I0 is the peak current,
while the correlated energy (chirp) profile is η = −µ(θ −
θm) − Υ(θ). Here, θm = θb/2 is the phase corresponding to
the middle of the bunch (we have χ(0) = χ(θb) = 0), µ is a
constant linear chirp coefficient and theΥ function represents
a nonlinear chirp component (we assume zero uncorrelated
energy spread). For our purposes, we select a parabolic
current profile of the form χ(θ) = 1 − (θ − θm)2/θ2

m and a
nonlinear chirp profile given byΥ(θ) = µ3(θ − θm)

3, though
the formalism can also accommodate the general case. The
logic of this particular selection will be justified later on.
Finally, we also assume a linear taper profile of the form
K = K0(1 + ε z).
We follow the self-consistent analysis of Ref. [2]. In the

linear regime of the interaction, we can show that the com-
plex radiation amplitude can be expressed as

a(θ, z) ∝
∑
j

e−iθ j G(θ, θ j, z) , (1)

where θ j are the random initial electron phases (at z = 0)
and G(θ, θ j, z) is a Green’s function. The latter is non-zero
only when 0 < θ − θ j < kuz, in which case it is given in
contour integral form (up to a phase term) by

G = −
1

2πi

∫ +∞+iy

−∞+iy

dλ̂

λ̂
exp(−iλ̂[z̄ − (θ̂ − θ̂ j)] − i

∫ τ(θ̂)

θ̂ j

dt

× χ̂(t)[λ̂ + ∆̂0(t − θ̂ j) + µ̂3{(t − θ̂m)3 − (θ̂ j − θ̂m)3}]−2) .
(2)
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In the above equation, we have introduced the following
scaled variables: z̄ = 2ρkuz, θ̂ = 2ρθ, θ̂ j = 2ρθ j ,
θ̂m = 2ρθm (where ρ is the dimensionless FEL (or Pierce)
parameter), µ̂3 = µ3/(8ρ4) and ∆̂0 = (µ − ā1)/(2ρ2), where
ā1 = a1/(2k2

u) and a1 = −2εkuK2
0/(2 + K2

0 ). Moreover, y
is a real constant that is larger than the imaginary part of all
the integrand singularities.

Apart from the current profile itself, finite pulse effects are
reflected in the function τ(θ̂), which is equal to θ̂ for 0 ≤ θ̂ ≤
θ̂b = 2θ̂m and θ̂b for θ̂ > θ̂b . For the case of zero taper and
zero nonlinear chirp (a1 = 0, µ3 = 0), the above expressions
reduce to the Green’s function for the case of linear chirp [3].
On the other hand, we can easily show that taking ∆̂0 = 0
reproduces the well-known compensation condition between
linear chirp and linear taper [4]. In any case, calculation of
the Green’s function via the contour integral is facilitated
by the stationary phase approximation, which is accurate
enough in the latter stage of the linear regime. It is worth
noting that, for the case of parabolic current/cubic chirp, the
t-integral in Eq. (2) can be determined analytically.
Given the Green’s function, we can determine various

properties of the radiation, the most important of which is
the radiation power. This quantity, averaged over a large
number of shots (i.e. ensembles of random phases), is given
by (see [5] and [1])

Prad(θ̂, z̄) = 2γ0mc3kr ρ2
∫

dθ̂ j χ̂(θ̂ j)
��G(θ̂, θ̂ j, z̄)��2 . (3)

Moreover, we can also quantify the state of the e-beam by
calculating the bunching factor b =

��〈e−iθ j
〉
∆

��, where the
∆-index refers to average within a radiation wavelength. The
shot-averaged version of this quantity is, in turn, given by〈

b2(θ̂, z̄)
〉

shot =
4πρ
n0λr

∫
dθ̂ j χ̂(θ̂ j)

��Gb(θ̂, θ̂ j, z̄)
��2/ χ̂2(θ̂) ,

(4)
where n0 = I0/(ec) is the peak number density and Gb =

(∂/∂ z̄ + ∂/∂θ̂)G is a derivative Green’s function (unlike G,
Gb is non-zero only within the electron bunch).
Finally, we note the relationship between the nonlinear

chirp coefficient µ3 and the linear chirp µ. Though these
two parameters are - in principle - independent, we correlate
them in the followingway: since the chirp profile of the beam
is shaped by space charge effects before the amplification
process, it can be modeled by the θ-derivative of the actual
current profile, which is closer to a Gaussian. Thus, we have

η = −µ(θ − θm) − µ3(θ − θm)
3 ∝

d
dθ

exp

(
−
(θ − θm)

2

2σ2
θ

)
,

(5)
up to third order terms in θ − θm. This yields the relation
µ3 = −µ/(2σ2

θ ). As far as σθ is concerned, we can either
choose it in an ad-hoc way or derive it by matching the
parabolic and Gaussian current profiles up to second order
in θ − θm. The latter manipulation yields σθ = θm/

√
2.

Though not entirely self-consistent, this strategy allows us
to adequately model the space-charge induced chirp while

preserving some degree of analyticity as far as the Green’s
function is concerned.

NUMERICAL RESULTS
In what follows, we present a brief numerical illustration

of the theory outlined in the previous section. We select a
parameter set that roughly approximates a plausible config-
uration of the X-LEAP eSASE experiment at SLAC. This
involves the generation of 800 eV photons (λr = 1.55 nm)
with a standard LCLS undulator (λu = 3 cm, K0 = 3.5) and
a 4.24 GeV beam with a peak current of 4.5 kA. The average
beta function is about 10 m, which corresponds to an rms
beam size of approximately 25 µm (for a transverse normal-
ized emittance of 0.5 µm). The ρ-parameter is about 2×10−3,
while we also assume zero uncorrelated energy spread. In
the first case we consider, µ is given by µ = −(∆γ/γ0)/θb,
where ∆γ = ∆E/mc2 and ∆E = 30 MeV is the total energy
variation due to the linear chirp. This leads to a negative lin-
ear chirp, which is compensated by the appropriate (reverse)
taper, leaving only the cubic component contribution.
In Figs. 1 and 2, we plot the (shot-averaged) radiation

power and bunching factor (the latter defined as
√
〈b2〉shot)

as functions of the position s along the bunch. The theo-
retical values are calculated by Eqs. (3) and (4) while the
simulation values are obtained from a 1D FEL simulation
code (some details in Ref. [2]). Reasonable agreement is
observed between the two approaches, which helps us build
up confidence in the formalism.
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Figure 1: Shot-averaged radiation power along the bunch
(z = 11.45 m, 0.5 µm bunch length, σ = σθ/kr = 160 nm,
∆E = 30 MeV, 400 shot average, matched linear chirp). The
blue/brown curve represents theory/simulation data.

Moving on, we scan the electron pulse duration te while
keeping constant both the peak current I0 and the product
µ × te. According to our previous discussion, the latter is
proportional to the total energy variation ∆E , which is fixed
at 35 MeV. Using the Green’s function, we obtain the power
profiles for the pure, matched linear chirp case (red data in
Figs. 3-4) and for the case with the added nonlinear chirp
component (blue data). In Fig. 3, we plot these two profiles
for a bunch length of 1.5 fs. A power suppression due to the
cubic chirp is immediately evident. Moreover, we find that
the radiation full-width-at-half-maximum (FWHM) is also
reduced. This is made explicit in Fig. 4, where the FWHM
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Figure 2: Shot-averaged bunching factor along the bunch
(same parameters/color convention as in Fig. 1).

is plotted as a function of te. A marked linear dependence is
observed, along with what appears to be a constant vertical
shift (reduction) due to the cubic chirp.

The former feature can actually be obtained in a heuristic
way by the following simple argument: since the ρ-parameter
scales according to L−1

g ∼ ρ ∼ I1/3, we can define a θ-
dependent ρ by plugging in the parabolic profile χ(θ) =
1 − (θ − θm)2/θ2

m (recall that I ∼ χ(θ)). Combining this
with the power growth relation P = P0 exp(z/Lg), we find
a power profile of the form exp(−(z/L0)(θ − θm)

2/(3θ2
m)),

where L0 = λu/(4π
√

3ρ)I→I0 is the basic (minimum) value
for the power gain length Lg (about 0.70 m for our parame-
ters). This predicts maximization of the radiation power in
the middle of the electron bunch, which is not very accurate
(in fact, it happens closer to the head of the beam, see Fig. 3).
On the other hand, the FWHM is simply te×

√
3 log 2/(z/L0),

a result which also exhibits linear dependence with a slope of
about 0.35. This is very close to the value calculated from the
Green’s function data (0.32), even though the simple model
does not take into account detuning effects etc. This scal-
ing may be of some use when doing back-of-the-envelope
calculations involving attosecond-style pulses.

In conclusion, we also point out that the Green’s function
formalism allows us to get a sense of what the optimum
setup of the FEL configuration is. Apart from determining
the proper matching strategy involving the linear chirp and
taper, we can study the interplay of power suppression and
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Figure 3: Power profiles for a matched linear chirp with or
without the cubic chirp component (blue and red curves,
respectively). The dashed line denotes the current profile.
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Figure 4: Radiation FWHM vs the electron bunch length
(same color convention as in Fig. 3). All of the data shown
in Figs. 3-4 have been calculated assuming that z = 12.3 m.

FWHM reduction due to the nonlinear chirp in order to
find a suitable working point. Though our results are only
one-dimensional, the essential conclusions remain valid in
a more complicated (3D) setup.

CONCLUSIONS
We have developed a one-dimensional, time-dependent

theory which can adequately model an eSASE-based FEL.
Our formalism includes startup from noise, radiation slip-
page, e-beam chirp (linear and nonlinear) and undulator
linear taper. Using a Green’s function approach, we are able
to determine the basic properties of the radiation pulse prior
to the onset of saturation. As part of our derivation, we can
provide a rigorous proof of the well-known compensation
condition between linear chirp and taper. Reasonable agree-
ment is observed between our semi-analytical treatment and
the output of a 1D FEL code. Moreover, our technique
is robust enough to allow us to perform simple parameter
studies, which show some interesting features like the pulse-
shortening effect due to nonlinear chirp.
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