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Abstract
In the context of radiation emission from an electron beam,

Dicke’s superradiance (SR) is the enhanced “coherent” spon-

taneous radiation emission from a pre-bunched beam, and

Stimulated-Superradiance (ST-SR) is the further enhanced

emission of the bunched beam in the presence of a phase-

matched radiation wave. These processes are analyzed for

Undulator radiation in the framework of radiation field mode-

excitation theory. In the nonlinear saturation regime the

synchronism of the bunched beam and an injected radia-

tion wave may be sustained by wiggler tapering: Tapering-

Enhanced Superradiance (TES) and Tapering-Enhanced

Stimulated Superradiance Amplification (TESSA). Identify-

ing these processes is useful for understanding the enhance-

ment of radiative emission in the tapered wiggler section of

seeded FELs. The nonlinear formulation of the energy trans-

fer dynamics between the radiation wave and the bunched

beam fully conserves energy. This includes conservation of

energy without radiation reaction terms in the interesting

case of spontaneous self-interaction (no input radiation).

INTRODUCTION
In the context of radiation emission from an electron

beam, Dicke’s superradiance (SR) [1] is the enhanced “co-

herent” spontaneous radiation emission from a pre-bunched

beam, and Stimulated-Superradiance (ST-SR) is the further

enhanced emission of the bunched beam in the presence

of a phase-matched radiation wave [2]. These processes

are analyzed for Undulator radiation in the framework of

radiation field mode-excitation theory. In the nonlinear

saturation regime the synchronism of the bunched beam

and an injected radiation wave may be sustained by wig-

gler tapering: Tapering-Enhanced Superradiance (TES) and

Tapering-Enhanced Stimulated Superradiance Amplification

(TESSA) [3]. In section II we present the radiation modes

expansion formulation (in the spectral Fourier frequency

formulation) [2] and explain the radiation cases. In sec-

tion III we derive the radiation from a single bunch and from

a finite train of bunches in the spectral Fourier frequency

formulations. In section IV we present the single frequency

formulation of the radiation field mode-excitation, and cal-

culate the power radiated by an infinite train of bunches,

and in section V we derive an energy-conserving non linear

model which results in a couple of differential equations and
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present numerical results of those equations for some cases

of interest.

SUPERRADIANCE AND STIMULATED
SUPERRADIANCE IN SPECTRAL

FORMULATIONS
As a starting point we review the theory of superradiant

(SR) and stimulated superradiant (ST-SR) emission from

free electrons in a general radiative emission process. In

this section we use a spectral formulation, namely, all fields

are given in the frequency domain as Fourier transforms of

the real time-dependent fields. We use the radiation modes

expansion formulation of [2], where the radiation field is

expanded in terms of an orthogonal set of eigenmodes in a

waveguide structure or in free space (eg. Hermite-Gaussian

modes):

{Ẽq(r), H̃q(r)} = {Ẽq(r⊥), H̃q(r⊥)}eikqz z

Ĕ(r, ω) =
∑
±q

C̆q(z, ω)Ẽq(r)

H̆(r, ω) =
∑
±q

C̆q(z, ω)H̃q(r)

The amplitude coefficients C̆q have dimensions of time, are

in units of secV/m and secA/m.

The excitation equations of the mode amplitudes is:

dC̆q(z, ω)
dz

=
−1

4Pq

∫
J̆(r, ω) · Ẽ∗

q(r)d2r⊥. (1)

where the current density J̆(r, ω) is the Fourier transform of

J(r, t).
The above is formally integrated and given in terms of the

initial mode excitation amplitude and the currents:

C̆q(z, ω) − C̆q(0, ω) = −
1

4Pq

∫
J̆(r, ω) · Ẽ∗

q(r)dV ,

where

Pq =
1

2
Re
∬

(Ẽq × H̃q) · êzd2r⊥=
|Ẽq(r⊥ = 0)|2

2Zq
Aemq

(2)

and Zq is the mode impedance (
√
μ0/ε0 in free space). In the

case of a narrow beam passing on axis near r⊥ = 0, Eq. (2)
defines the mode effective area Aemq in terms of the field

of the mode on axis Ẽq(r⊥ = 0).
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For the Fourier transformed fields we define the total

spectral energy (per unit of angular frequency) based on

Parseval theorem as

dW
dω
=
2

π

∑
q

Pq |C̆q(ω)|
2 .

This definition corresponds to positive frequencies only:

0 < ω < ∞. Considering now one single mode q,

dWq

dω
=
2

π
Pq |C̆q(ω)|

2 .

For a particulate current (an electron beam):

J(r, t) =
N∑
j=1

−evj(t)δ(r − rj(t)) .

The field amplitude increment appears as a coherent sum of

contributions (energy wavepackets) from all the electrons in

the beam:

C̆out
q (ω) − C̆in

q (ω) ≡

N∑
j=1

ΔC̆qj(ω) = −
1

4Pq

N∑
j=1

ΔW̆qj , or

ΔW̆qj = −e
∫ ∞

−∞

vj(t) · Ẽ∗
q(rj(t))eiωtdt . (3)

The contributions can be split into a spontaneous part (in-

dependent of the presence of radiation field) and stimulated

(field dependent) part:

ΔW̆qj = ΔW̆
0
qj + ΔW̆

st
q j .

We do not deal in this section with stimulated emission;

however, we note that, in general, the second term ΔW̆st
q j

is a function of C̆q(z) through rj(t) and vj(t) and therefore
ΔW̆st

q j cannot be calculated explicitly from the integral in

Eq. 3. Its calculation requires solving the electron force

equations together with the wave excitation equation in Eq. 1.

Assuming a narrow cold beam where all particles follow

the same trajectories, we may write rj(t) = r0j (t − t0j) and
vj(t) = v0j (t − t0j), change variable t ′ = t − t0j in Eq. (3) [5],
so that the spontaneous emission wavepacket contributions

are identical, except for a phase factor corresponding to their

injection time t0j :

ΔW̆0
qj = ΔW̆

0
qeeiωt0 j ,

where

ΔW̆0
qe = −e

∫ ∞

−∞

v0e(t) · Ẽ
∗
q(r

0
e (t))e

iωtdt. (4)

The radiation mode amplitude at the output is composed of

a sum of wavepacket contributions including the input field

contribution (if any):

C̆out
q (ω) = C̆in

q (ω) + ΔC̆0
qe(ω)

N∑
j=1

eiωt0 j (5)

so that the total spectral radiative energy from the electron

pulse is

dWq

dω
=
2

π
Pq

��C̆out
q (ω)

��2
=
2

π
Pq

{ ��C̆in
q (ω)

��2
+

���ΔC(0)
qe (ω)

���2 ����
N∑
j=1

eiωto j

����
2

+

[
C̆in∗
q (ω)ΔC(0)

qe (ω)

N∑
j=1

eiωto j + c.c.
]}

=

(
dWq

dω

)
in

+

(
dWq

dω

)
sp/SR

+

(
dWq

dω

)
ST−SR

.

The first term in the {} parentheses (“in”) represents the

input wave spectral energy. The second term (“sp/SR”) is

the spontaneous emission, which may also be superradiant

in case that all contributions add in phase. The third term

has a very small value (averages to 0) if the contributions

add randomly, so it is relevant only if the electrons of the

beam enter in phase with the radiated mode. It is thus de-

pendent on the coherent mode complex amplitude C̆in
q , and

therefore it is marked by the subscript “ST-SR”, i.e. “zero-

order”stimulated superradiance.

SINGLE BUNCH AND FINITE
TRAIN OF BUNCHES

Using Eq. (4) for a single tight bunch one obtains the

spectral energy per unit of angular frequency at the exit of

the undulator for SR(
dWq

dω

)
SR

=
N2e2Zq

16π

(
aw

βzγ

)2 L2w
Aem

sinc2(θLw/2) ,

and for ST-SR(
dWq

dω

)
ST−SR

= |C̆in
q (ω)|

Ne
2π

(
aw

βzγ

) √
2ZqPq

Aemq
Lw

× sinc(θLw/2) cos(ϕqb0 − θLw/2) ,

where Lw is the undulator length.

Similarly, for a train of NM tight bunches, one obtains(
dWq

dω

)
SR

=
N2e2Zq

16π

(
aw

βzγ

)2

×
L2w
Aem

|MM (ω)|2 sinc2(θLw/2) ,

(
dWq

dω

)
ST−SR

= |C̆in
q (ω)|

Ne
2π

(
aw

βzγ

)√
2ZqPq

Aemq
Lw |MM (ω)|

× sinc(θLw/2) cos(ϕqb0 − θLw/2) ,

where

MM (ω) =
sin(NMπω/ωb)

NM sin(πω/ωb)
.
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INFINITE TRAIN OF BUNCHES IN
SINGLE FREQUENCY ANALYSIS

In the single frequency analysis, the radiation modes ex-

pansion formulation is expressed by the following equations:

Ẽ(r) =
∑
q

C̃q(z)Ẽq(r)

H̃(r) =
∑
q

C̃q(z)H̃q(r)

Pq =
1

2
Re
∬

(Ẽq × H̃q) · êzd2r⊥ =
|Ẽq(r⊥ = 0)|2

2Zq
Aemq

dC̃q(z)
dz

=
−1

4Pq

∫
J̃(r) · Ẽ∗

q(r)d2r⊥

P =
∑
q

Pq |C̃q(ω)|
2

representing the radiated power. We can again use the exci-

tation as described in Eq. (5):

C̃out
q (ω) − C̃in

q (0) = −
1

4Pq

∫
J̃(r) · Ẽ∗

q(r)dV .

Applying this to an infinite train of tight bunches results

in the SR radiated power

PSR =
1

32
Zq

N2e2ω2
0
| β̃w |

2

π2β2z

L2w
Aemq

sinc2(θLw/2) ,

and the ST-SR radiated power

PST−SR =
1

4
|C̃q(0)|

Neω0 | β̃w |

πβz

√
2ZqPq

Aemq
Lw×

cos(ϕqb0 − θLw/2) sinc(θLw/2) .

DYNAMICS OF A PERIODICALLY
BUNCHED BEAM INTERACTING

WITH RADIATION FIELD
In this section we include the influence of the radiated

field on the charged bunches, and include this influence in

the calculation of the radiated power.

The power of the electron bunches

Nbmc2
dγ
dt
= Qbv · E(r, t) ,

combined with the excitation equation

dC̃q

dz
=

−1

4Pq

∫
J̃ · Ẽ∗

qd2r⊥ ,

using the definition

ψ ≡ −[ϕb(z) − ϕq(z) − π/2] = −

∫ z

0

θ(z′)dz′ + ψ(0) ,

results in a Shifted-Pendulum equation:

d |C̃q |

dz
= B sinψ

dδγ
dz
= −
β3zrγ

2
zrγr

k0
K2
s (z)[sinψ − sinψr ]

dψ
dz
=

k0
β3zrγ

2
zrγr
δγ +

B
|C̃q |

cosψ ,

where 0 < ψr < π/2. We use the parameters of the NO-
CIBUR experiment [6] assuming idealized tight bunching

and moderate tapering. In the following figures we show

phase-space results for different cases of uniform or tapered

wiggler. In all following figures panel (a) shows the phase-

space diagram ψ − θ, where the black line shows the sep-
aratrix at the end of the trajectory and panel (b) shows the

radiation power change, the electron beam power change,

and their sum which remains at zero.
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Figure 1: Uniform wiggler supperadiance.
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Figure 2: Tapered wiggler with initial phase ψr . Contribu-
tions of the tapering γr (u) (cyan), synchrotron oscillation
dynamics δγ(u) (red, and the total beam power drop ΔPel

(green).
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Figure 3: Same as Figure 2 with initial phase π/2.

CONCLUSION
We showed in this work a simplified approach for includ-

ing the force on the charged bunches in the calculation of the
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Figure 4: Uniform wiggler self interaction.

radiation. The simplification is in assuming perfectly tight

bunches, and infinite train of bunches, in the single frequency

approach. In spite of those simplifications, the method is

useful for better understanding the tapering mechanism and

improve it.
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