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Abstract
Coherent synchrotron radiation (CSR) is an essential con-

sideration in modern accelerators and related electromag-
netic structures. We present our current method to examine
CSR in the time domain. The method uses a 2D Disconti-
nous Galerkin (DG) discretization in the longitudinal and
transverse coordinates (z,x) with a Fourier decomposition
in the transverse coordinate y. After summation over modes,
this treatment describes all electromagnetic field compo-
nents at each space-time coordinate (z,x,y,t). Additionally,
by alignment of mesh element interfaces along a source ref-
erence orbit, DG methods can handle discontinuous or thin
sources in the transverse x direction. We present an overview
of our method, illustrate it by calculating wake functions for
a bunch compressor, and discuss a method for estimating
emittance growth from the wake fields in future work.

PROBLEM STATEMENT
In a continuation of earlier work [1–3], we examine the

generation of CSR by an ultra-relativistic electron bunch
in a vacuum chamber of rectangular cross-section. For a
simplified model, we only consider motion of the bunch in
a planar orbit with Cartesian coordinates (Z, X,Y ) in the
midplane Y = 0. Additionally, we only model vacuum
chambers with planar horizontal boundaries at Y = ±h/2
where h is the height of the chamber and only consider
perfectly electrically conducting (PEC) boundary conditions
on the chamber walls. An example of a chamber with a
planar orbit is shown in Figure 1 (top), corresponding to the
bunch compressor DESY BC0.

Figure 1: DESY BC0 vacuum chamber domain in (Z, X)
(top) or (s, x) (bottom) coordinates with reference orbit (red
dashed). The entrance region is the same in both systems.

To study CSR wake fields, we seek to time-evolve the
Maxwell field equations for E and H inside the chamber:

∂E
∂τ
= Z0∇ ×H − Z0j,

∂H
∂τ
= −

1
Z0

∇ × E, (1)
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where τ = ct, with speed of light c, vacuum impedance Z0,
and current density j.
Given a smooth reference orbit parametrized by its arc

length Rr (s) = (Zr (s), Xr (s), 0), we transform the (Z, X,Y )
coordinate system to a curvilinear system (s, x, y) with the
inverse transformation of:

Z(s, x, y) = Zr (s) − xX ′r (s),

X(s, x, y) = Xr (s) + xZ ′r (s),

and Y (s, x, y) = y,

(2)

using the signed curvature: κ(s) = Z ′′r (s)X
′
r (s)−Z ′r (s)X

′′
r (s)

and length scale factor: η(s, x) = 1 + xκ(s). In the (s, x, y)
coordinate system, the reference orbit is the straight line
(x, y) = (0, 0). Furthermore, this coordinate mapping is
well-defined if η > 0 throughout the domain; where the
transformation is unique. See Figure 1 (bottom) for a depic-
tion of the curvilinear transformation of the geometry in the
case of DESY BC0.
In the (s, x, y) coordinate frame, we assume a current

density of the form: j = (qcλ(s − τ)δ(x)G(y), 0, 0) with
Gaussian longitudinal and transverse distributions λ and G,
and a Dirac distribution in the x-coordinate. We choose σs ,
the bunch length, such that the bunch is supported only in
the entrance region to machine precision at τ = 0.
We now use the parallel plate geometry of y = ±h/2 to

introduce a Fourier decomposition in y for all fields:

f (s, x, y, τ) =
∞∑
p=1

fp(s, x, τ)φ
(
αp(y + h/2)

)
and fp(s, x, τ) =

2
h

∫ h/2

−h/2
f (s, x, y, τ)φ

(
αp(y + h/2)

)
dy,

(3)

with αp = πp/h, f representing Es, Ex, Ey,Hs,Hx,Hy or G,
and φ(·) is sin(·) for Es, Ex,Hy,G or cos(·) for Ey,Hs,Hx . If
the initial fields and G(y) are symmetric about y = 0, then
the even p modes for all fields vanish. We denote the Fourier
series modes with the subscript p.

To numerically treat the singularity at x = 0 in the current
j term on the right-hand-side of (1), we apply an additional
transformation on the Hyp field component: H̃yp = Hyp −

qcGpλ(s − τ)Θ(x) where Θ(x) is the Heaviside function.
Additional transformations can be made to transform the
source to arbitrary degree of smoothness [4]; however, for
a DG method with element edges which align along the
discontinuity, this is not required.

Applying the curvilinear coordinate transformation in (2),
the Fourier series decomposition in (3), and the transforma-
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tion for Hyp , to (1) yields:

1
Z0

∂Esp

∂τ
=
∂H̃yp

∂x
+ αpHxp, (4a)

1
Z0

∂Exp

∂τ
= −αpHsp −

1
η

∂H̃yp

∂s
+ SE, (4b)

1
Z0

∂Eyp

∂τ
=

1
η

∂Hxp

∂s
−
∂Hsp

∂x
−
κ

η
Hsp, (4c)

Z0
∂Hsp

∂τ
= αpExp −

∂Eyp

∂x
, (4d)

Z0
∂Hxp

∂τ
=

1
η

∂Eyp

∂s
− αpEsp, (4e)

Z0
∂H̃yp

∂τ
=
∂Esp

∂x
+
κ

η
Esp −

1
η

∂Exp

∂s
+ SH, (4f)

where the source terms SE = −qcGpλ
′(s − τ)Θ(x)/η(s, x)

and SH = qZ0cGpλ
′(s − τ)Θ(x) arise from j after the Hyp

transformation.
To initialize the time-evolution of the system in (4) we

consider all fields inside the vacuum chamber to be zero
initially except for the entrance region. In this region, where
the reference orbit is a straight line in (Z, X,Y ) with κ =
0, η = 1; the solution for a centered beam about x = 0
with entrance region chamber width 2d satisfying the PEC
boundary conditions is given by:

Esp0 = 0, Hsp0 = 0,
Exp0 = −qZ0cGpλ(s)Φp(x), Hxp0 = −Eyp0/Z0, (5)
Eyp0 = −qZ0cGpλ(s)Ψp(x), Hyp0 = Exp0/Z0,

and

Φp(x) =
sinh(αpd)
sinh(2αpd)

cosh
(
αp (x + d)

)
− cosh(αpx)Θ(x),

Ψp(x) =
sinh(αpd)
sinh(2αpd)

sinh
(
αp (x + d)

)
− sinh(αpx)Θ(x).

However, in implementation, we use a numerical DG Pois-
son solver in computing the initial fields on the mesh to
reduce parasitic charge effects. Lastly, the beam pipes in the
entrance and exit regions are also enclosed with PEC con-
ditions since the simulation is set to halt once the electron
bunch reaches midway into the exit region of the chamber.
If longer wake field simulations are desired, this exit region
may be extended with little additional computational effort
since the cross-sectional width is small.

DISCONTINUOUS GALERKIN METHOD
In this section we briefly outline the DG scheme used for

our time-evolution of (4). Our approach follows the nodal
DG foundation given in [5]. To begin, we partition the vac-
uum chamber domain in (s, x) into K triangular elements,
with curved elements along the boundary as needed. Addi-
tionally, we impose that the reference orbit x = 0 lies strictly
along interfaces of elements and does not bisect any element.

For a given element Dk , for k ∈ {1, ...,K}, we approximate
each field by sums of Lagrange polynomials of Nth order de-
noted by `kj (s, x)with Np = (N+1)(N+2)/2 nodes: (ski , xki )
where `kj (s

k
i , xki ) = δi j , for i, j ∈ {1, ..., Np}. For a field com-

ponent u on element Dk , its polynomial approximation is
given by:

uk(s, x, τ) =
Np∑
i=1

uk
i (τ)`

k
i (s, x). (6)

We next construct residuals Rk for each of the fields uk

from (4) which each have the form:

Rk(s, x, τ) =
∂uk

∂τ
− a

∂vk

∂s
− b

∂wk

∂x
− cwk − f . (7)

For example, for equation (4c): u = Eyp , v = H̃xp , w = Hsp ,
a = Z0/η, b = −Z0, c = −Z0κ/η, and f = 0. For a
Galerkin scheme, we require the residuals to be orthogonal
to the same polynomial space spanned by `kj on the element.
However, a numerical flux must be introduced to couple
the elements together along their edges. This flux term is
a single-valued function depending on interior and exterior
values along the interface. We choose an upwind flux for our
hyperbolic system of equations (4). A thorough derivation
of the resulting system of discrete equations is given in [2]
with DG constructions detailed in [5].

With the discrete DG equations for (4) combined over all
K elements, we obtain a system of 6NpK equations. We
evolve these equations in τ with a fourth-order low-storage
explicit Runge-Kutta scheme [6].

WAKE FIELDS AND POST PROCESSING
We present simulation results for computing the longitu-

dinal wake field by integrating Es along the reference orbit.
We define the longitudinal wake function on the orbit by:

ws(z) =
−1
q

∫ T

0
Es(τ − z, 0, 0, τ)dτ

=
−1
q

pmax∑
p=1

sin
( πp

2

) ∫ T

0
Esp(τ − z, 0, τ)dτ.

(8)

We denote z as the distance with respect to the center of the
bunch along the reference orbit, not the Cartesian coordinate
Z . Evaluation of Esp is done while time-stepping (4) by
averaging the field along x = 0 using the elements’ DG
Nth-order polynomial representation as in (6). We set T/c
to be the time when the bunch is midway into the exit region.

For the transverse wake function wx(z), we replace Es by
(Ex − Z0Hy) and for the wake function wy(z) we replace Es

by (Ey + Z0Hx) in equation (8).
We also define the loss factor by:

L = −
∫ ∞

−∞

ws(z)λ(z)dz. (9)
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In our first example, we consider a straight orbit such that
(s, x) = (Z, X) where the bunch passes through a rectangu-
lar beam taper. While no CSR is generated, the narrowing
width of the chamber generates a longitudinal wake in Figure
2. This test is used to compare wake fields to CST Particle
StudioTM [7] and PBCI [8]. The discrepancy in wake func-
tions behind the bunch at z ≈ −50mm is due to the difference
in wake function integration methods, and diminishes as T
increases. The loss factor relative error between our DG
method and CST is |LDG − LCST |/|LCST | = 7.87 × 10−5.

Figure 2: (Top) Wake function ws(z) shown using N = 8,
K = 27544, and p = 1, 3, 5 modes for the tapered rect-
angular beam transition using our DG method, CST Par-
ticle StudioTM, and PBCI. (Bottom) An enlarged view of
ws(z) near z = 0. The thin dashed line shows the bunch
profile λ(z) scaled to the figure. The loss factor is L =
−1.847 × 10−1 V/pC.

In our second example, we use the full DESY BC0 geome-
try as shown in Figure 1. In Figure 3, we plot the longitudinal
wake generated by CSR and the geometry after the bunch
travels along the chicane orbit comprised of straights and
arcs of circles with constant curvature κ = 1 m−1.

CONCLUSION AND FUTURE WORK
In this study, we computed CSR fields generated in a

bunch compressor vacuum chamber using DG finite ele-
ments in the time domain. We also presented a method to
compute the longitudinal wake field and loss factors.

Our next application of this DGmethod will study the evo-
lution of particle distributions by importing field maps into
a particle tracking code to study emittance growth. Addi-
tionally, we will investigate the use of the Panofsky-Wenzel
theorem [9] in curvilinear coordinates as an alternative

Figure 3: Wake function ws(z) for the DESY BC0 vacuum
chamber. The thin dashed line shows the bunch profile λ(z)
scaled to ws(z). The loss factor is L = 1.485 × 10−5 V/pC.

approach to obtaining the transverse wake functions. We
also will compare our results to paraxial frequency-domain
methods [10] and other CSR codes such as CSRtrack [11].
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