
ADAPTIVE FEEDBACK FOR AUTOMATIC PHASE-SPACE TUNING OF
ELECTRON BEAMS IN ADVANCED XFELS

A. Scheinker∗, Los Alamos National Laboratory, Los Alamos, USA
D. Bohler†, SLAC National Accelerator Laboratory, Menlo Park, USA

Abstract
Particle accelerators are extremely complex devices hav-

ing thousands of coupled, nonlinear components which in-
clude magnets, laser sources, and radio frequency (RF) ac-
celerating cavities. Many of these components are time-
varying. One example is the RF systems which experience
unpredictable temperature-based perturbations resulting in
frequency and phase shifts. In order to provide users with
their desired beam and thereby light properties, LCLS some-
times requires up to 6 hours of manual, experience-based
hand tuning of parameters by operators and beam physicists,
during a total of 12 hours of beam time provided for the
user. Even standard operational changes can require hours
to switch between user setups. The main goal of this work
is to study model-independent feedback control approaches
which canwork together with physics-based controls tomake
overall machine performance more robust, enable faster tun-
ing (seconds to minutes instead of hours), and optimize
performance in real time in response to un-modeled time
variation and disturbances.

INTRODUCTION
While existing and planned free electron lasers (FEL) have

automatic digital control systems, they are not controlled
precisely enough to quickly switch between different oper-
ating conditions. Existing controls maintain components
at fixed set points, which are set based on desired beam
and light properties, such as, for example, the current set-
tings in a bunch compressor’s magnets. Analytic studies
and simulations initially provide these set points. However,
models are not perfect and component characteristics drift
in noisy and time-varying environments; setting a magnet
power supply to a certain current today does not necessarily
result in the same magnetic field as it would have 3 weeks
ago. Also, the sensors are themselves noisy, limited in res-
olution, and introduce delays. Therefore, even when local
controllers maintain desired set points exactly, performance
drifts. The result is that operators continuously tweak pa-
rameters to maintain steady state operation and spend hours
tuning when large changes are required, such as switching
between experiments with significantly different current,
beam profile (2 color, double bunch setups), or wavelength
requirements. Similarly, traditional feed-forward RF beam
loading compensation control systems are limited by model-
based beam-RF interactions, which work extremely well for
perfectly known RF and beam properties, but in practice are
limited by effects which include un-modeled drifts and fluc-
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tuations and higher order modes excited by extremely short
pulses. These limitations have created an interest in itera-
tive (beam-based feedback), machine learning, and adaptive
techniques.

The focus of this work is on minimizing the lengthy (1-10
hours) suboptimal manual tuning is required when beam
parameters are changed between experiments, especially
when settings of the low energy beam sections (<500 MeV)
are changed. The sources of tuning difficulty include com-
plex effects such as: space charge and coherent synchrotron
radiation, which depend on many machine settings simulta-
neously, unobservable parameters, which are not well con-
trolled, and time varying, drifting components. Such dif-
ficulties will only increase as existing and future light are
exploring new and exotic schemes such as two-color oper-
ation (LCLS, LCLS-II) and next generation light sources
seek to provide brighter, shorter wavelength (0.1nm at PAL,
0.05 nm at EuXFEL, and 0.01 nm at MaRIE), more coherent
light [1]. To achieve their performance goals, new machines
face unique challenges, such as requiring extremely low elec-
tron beam emittance and energy spread. LCLS-II requires
<0.01% rms energy stability, which is >10x more than the
existing LCLS linac [2]. EuXFEL requires < 0.001 %/deg
rms RF amplitude and phase errors, respectively (current
state of the art is 0.01) [3]. Existing and future acceler-
ators will benefit from an ability to quickly tune between
experiments and to compensate for extremely closely spaced
electron bunches, such as might be required for MaRIE, re-
quiring advanced controls and approaches such as droop
correctors [4, 5].

The type of tuning problems that we are interested in have
recently been approached with powerful machine learning
methods [6, 7], which are showing very promising results.
Our approach to this problem is complementary to other
machine learning methods in that instead of learning over
long periods of time, we attempt to respond quickly in real
time, based on very limited measurements. One possible
limitation of our approach is that being a real time, local
feedback, it may become trapped in a local minimum. Fu-
ture plans exist for combining the work discussed here with
machine learning. We utilize a novel model-independent
extremum seeking (ES) based feedback scheme, which oper-
ates based only on noisy measurements without dependence
on accurate system models [8, 9] and is closely related to
vibrational control [10]. The advantages of this approach
are:
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Figure 1: Parameter convergence and cost minimization for matching desired bunch length and energy spread profiles.
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Figure 2: Measured XTCAV, original LiTrack and final, converged LiTrack energy vs position phases space of the electron
bunch shown.

1. Multiple parameters tuned simultaneously.

2. The method is incredibly robust to noise, as has been
demonstrated in hardware for tuning magnets [14].

3. Unlike genetic algorithms or simulation-based learning
approaches, ES acts as a feedback directly on the actual
system, adapting as things vary with time, and has ana-
lytically proven robustness, stability, and convergence
rate estimates.

4. The parameter settings and update rates have analyti-
cally known, user-chosen bounds.

ITERATIVE EXTREMUM SEEKING
The ES method has been utilized in software and in hard-

ware for automated particle accelerator tuning [11], electron
bunch length prediction at FACET [13], in-hardware tuning

of RF systems at LANSCE [12,15], and automated tuning of
magnets in a time-varying lattice to continuously minimize
betatron oscillations at SPEAR3 [14].
For the work described here, a measured XTCAV image

was utilized and compared to the simulated energy and po-
sition spread of an electron bunch at the end of the LCLS
as simulated by LiTrack. The electron bunch distribution
is given by a function ρ(∆E,∆z) where ∆E = E − E0 is
energy offset from the mean or design energy of the bunch
and ∆z = z − z0 is position offset from the center of the
bunch. We worked with two distributions:

XTCAV measured : ρTCAV(∆E,∆z),

LiTrack simulated : ρLiTrack(∆E,∆z).

These distributions were then integrated along the E and
z projections in order to calculate 1D energy and charge
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distributions:
ρE,TCAV(∆E), ρz,TCAV(∆z),

ρE,LiTrack(∆E), ρz,LiTrack(∆z).

Finally, the energy and charge spread distributions were
compared to create cost values:

CE =

∫ [
ρE,TCAV(∆E) − ρE,LiTrack(∆E)

]2 d∆E, (1)

Cz =

∫ [
ρz,TCAV(∆z) − ρz,LiTrack(∆z)

]2 d∆z, (2)

whose weighted sum was comined into a single final cost:

C = wECE + wzCz . (3)

Iterative extremum seeking was then performed via finite
difference approximation of the ES dynamics:

p(t + dt) − p(t)
dt

≈
dp
dt
=
√
αω cos(ωt + kC(p, t)), (4)

by updating LiTrack model parameters, p = (p1, . . . , pm),
according to

pj(n + 1) = pj(n) + ∆
√
αωj cos

(
ωjn∆ + kC(n)

)
, (5)

where the previous step’s cost is based on the previous sim-
ulation’s parameter settings,

C(n) = C(p(n)). (6)

Machine tuning work has begun with general analytic
studies as well as simulation-based algorithm development
focused on the LCLS beam line, using SLAC’s LiTrack soft-
ware, a code which captures most aspects of the electron
beam’s phase space evolution and incorporates noise repre-
sentative of operating conditions. The initial effort focused
on developing ES-based auto tuning of the electron beam’s
bunch length and energy spread by varying LiTrack parame-
ters in order to match LiTrack’s output to an actual TCAV
measurement taken from the accelerator by tuning bunch
compressor energies and RF phases. The results are shown
in Figures 1 and 2. Running at a repetition rate of 120 Hz,
the simulated feedback would have converged within two
seconds on the actual LCLS machine.

CONCLUSIONS
Preliminary results have demonstrated that ES is a pow-

erful tool with the potential to automatically tune an FEL
between various bunch properties such as energy spread and
bunch length requirements by simultaneously tuning multi-
ple coupled parameters, based only on a TCAVmeasurement
at the end of the machine. Although the simulation results
are promising, It remains to be seen what the limitations
of the method are in the actual machine in terms of getting
stuck in local minima and time of convergence. We plan on
exploring the extent of parameter and phase space through
which we can automatically move.
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