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Abstract
The properties of off-axis radiation from an electron beam

that has been kicked off axis are relevant to recent Delta

undualtor experiments at LCLS. We calculate the coherent

emission from a microbunched beam in the far-field, and

compare with simulation. We also present a mechanism for

microbunches to tilt toward a new direction of propagation.

INTRODUCTION
During the commissioning of the Delta undulator at LCLS,

a highly circularly polarized beam was produced by kicking

the electron beam prior to the Delta undulator [1]. This

situation is depicted in Figure 1. With the right detune in

the Delta undulator parameter K , a large angular separation
between linear light produced prior to the Delta and circular

light produced in the Delta was observed. This result is

non-intuitive because, as seen in Figure 1, the microbunches

don’t realign themselves in the direction of propagation.
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Figure 1: Microbunched electrons traveling left to right

(black) are kicked by an angle α � 1 in the y direction. The

microbunches drift relative to the extant electric field (gray).

An observer examines the far-field power at an angle φy .

Here the coherent radiation from a kicked beam is an-

alyzed from a classical synchrotron radiation prospective.

The motion of an electron in a diffracting electric field is

also investigated.

COHERENT EMISSION FROM
ANGLED MICROBUNCHES

The electric field in the paraxial approximation from a sin-

gle electron traveling on axis and with no transverse velocity

in an undulator of length Lu is [2]

E0
ν, j(φ, z = Lu) ∝ eiωtj

∫ Lu

0

eikz
′φ2/2ei(ν−1)kuz

′
dz′, (1)
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where E0
ν(φ, z) is the field at an angle φ and wavenumber

k = ω/c = νk1, tj is the electron arrival time at z = 0, and
k1 is the wavenumber resonant to an undulator of period
λu = 2π/ku . The frequency of interest is detuned by an
amount Δν = ν − 1 = (k − k1)/k1 from the undualtor

resonant frequency.

The electric field from an electron with position xj, trans-
verse velocity dxj/dz = x′

j , and energy deviation from reso-

nance ηj = (γ − γr )/γr is [2]

Eν, j(φ, Lu) = e−ikφ ·x jE0
ν−2η j, j

(
φ − x′

j, Lu

)
. (2)

In order to calculate the power from the kicked beam

shown in Figure 1, we sum and square the contributions

from all Ne electrons,

P(φ, Lu) =
Ne∑
j

��Eν, j

��2 +
Ne∑
j

Ne∑
k�j

Eν, jE∗
ν,k . (3)

The first sum is inconsequential for a bunched beam, while

the double sum is typically converted into a double integral

over the electron probability distribution, f (xj, x′
j, ηj, tj).

For simplicity we assume that all variables are indepen-

dent and therefore f is separable. The expression for the
power takes a simple form when the beam has no spread in

energy (ηj = 0), and no spread in angle (x′
j = 0). These

assumptions eliminate the emittance effects discussed in

Ref [3], but other effects become more apparent. To match

Figure 1, we set x′
j = (0, α). The explicit form of the longitu-

dinal distribution f (tj) is not important for this calculation,
so we set ∫

eiωt f (t)dt = b. (4)

After integrating over x and t, the power is seen to be

P
(
φx, φy

) ∝ |b|2
�� f̃ (φx, φy)��2 ×

sinc2
[
πNu

(
Δν + γ2zφ

2
x + γ

2
z

(
φy − α

)2)]
,
(5)

where

f̃ (φx, φy) =
∫

dx f (x, y)eikφ ·x (6)

is the spatial transform of the transverse distribution, Nu =

Lu/λu is the number of oscillations in the wiggler, and γ2z =
γ2/(1 + K2). Expressions similar to Equation 5 are derived
elsewhere [3–5]. If x is normally distributed around zero
with rms spread σ,

P
(
φx, φy

) ∝ |b|2 e−k
2σ2(φ2x+φ2y)×

sinc2
[
πNu

(
Δν + γ2zφ

2
x + γ

2
z

(
φy − α

)2)]
,
(7)
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Examining Equation 7, the far-field intensity may be max-

imized by setting the argument of the sinc function equal to

zero with φ = 0. The detune Δν∗ required to correct for a
tilt α is

Δν∗ = −γ2zα2. (8)

This prediction is compared to Genesis simulation results in

a subsequent section.

Another point of interest is the angle φy at which the max-
imum radiation intensity occurs for a non-optimal detune

Δν and kick α. In order to arrive at a compact expression,
we approximate the sinc2 function as a Gaussian centered at

0 with the appropriate width, sinc2(x) ≈ e−x
2/3. With this

simplification the angle φ∗y of maximum emission is the only

real solution to

6Nφ∗y = (α − φ∗y)πNu

(
γ2z (α − φ∗y)2 + Δν

)
, (9)

where N = kσ2/Lu is the electron beam Fresnel num-

ber [4]. This simplification ignores the local maxima of the

sinc function that occur away from the origin, though similar

equalities could be written for these maxima. Equation 9

is compared to Genesis simulation results with LCLS-like

parameters in a subsequent section.

For beams with a large transverse size, N → ∞, and there-
fore φ∗y → 0. Such a beam will only radiate perpendicular

to its microbunches.

For beams of small transverse size, N → 0, and therefore

φ∗y → α+ (αΔν/|αΔν |)|Δν |1/2/γz . In this regime, radiation
at or beyond the kick angle α is possible.

The number of wiggle periods Nu is important in the

intermediate regime where N is close to unity. Nu governs

how sharp the sinc2 function is. Thus, a long undulator will

have more concentrated off-axis emission.

A MECHANISM TO TILT
MICROBUNCHES

The previous section showed that off-axis emission from

a tilted microbunch is predicted from classical radiation the-

ory. In this section, however, we show that a microbunch

kicked off-axis is expected to realign towards the new di-

rection of travel. This effect is not large, but may be large

enough to extend the off-axis radiation farther off axis. This

realignment is the result of an interaction with an extant

electric field.

For simplicity we consider the dynamics of an electron

moving in a diffracting Gaussian field E are described by

the FEL pendulum equations [2],

dθ
dz
= 2kuη (10)

dη
dz
= 2χ1E(y, z) (11)

E(y, z) = E0w0
w(z) e−y(z)

2/w(z)2 cos (ψ(z) + θ) , (12)

where θ is the electron phase, η = (γ − γ0)/γ0 is the energy
deviation, χ1 = Ke/

√
2γ0mc2, w0 is the beam waist size,

w(z)2 = w2
0
(1 + z2/z2r ), zr = πw2

0
/λ is the Rayleigh range,

and

ψ(z) = tan−1
(

z
zr

)
− ky(z)2
2z

(
1 + z2r/z2

) . (13)

The FEL resonance condition eliminates the kz − ωt phase
accrual in an electric field, but the Gouy phase tan−1(z/zr )
and the off-axis term in ψ(z) cannot be accounted for by a
wiggler with a constant K value. Equation 12 is written with

z = 0 corresponding to the Gaussian beam waist. While

the actual beam waist is behind the end of an undulator, we

argue momentarily that the curvature of the field not critical

under LCLS-like conditions, and the exponential drop-off

in intensity plays a more important role. The FEL pendu-

lum equations are usually written with a third differential

equation relating the field growth to the bunching. In this

analysis we ignore this effect, and therefore the result is not

self-consistent. We believe the model still provides some

understanding of the phenomena observed in simulation,

so we proceed. In analogy to Figure 1, only the radiation

from undulators upstream of the kick will affect the particle

dynamics discussed here.

We will also assume that the transverse position of the

electron is simply

y(z) = αz + y0. (14)

This trajectory ignores undulator focusing and transverse

field effects. Equations 10-12 can easily be solved numeri-

cally, but insight is gained from making two assumptions.

The first simplification is that the electron is kicked far

beyond a beam waist after propagating a distance zr ,

α 
 w0

zr
=
λ

πw0
. (15)

During Delta experiments, this criterion is weakly satisfied.

Typical values for α are around 30−60 μrad, while matching
simulations at 850 eV tells us that λ/(πw0) ≈ 15 μrad.

The assumption in Equation 15 means the exponential

factor in Equation 12 will have turned off any interaction

long before an electron travels a Rayleigh range. Therefore,

the phase factor

ψ(z) = tan−1
(

z
zr

)
− k(y0 + αz)2
2z

(
1 + z2r/z2

) (16)

is zero for the duration of interaction when y0 = 0.

A corollary is y0 � αzr , generalizing the previous state-
ment to include non-zero y0. This follows directly from

Equation 15 since a typical electron transverse starting posi-

tion is of the same order as w0.

The second assumptions is that the phase θ in Equation
12 may be treated as constant. This may be justified by

requiring that the phase, θe, accumulated over the distance
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at which E(y, z) is decreased by 1/e is small. It follows from
Equations 10-12 that, for y0 = 0,

|θe | < 2χ1 |E0 |ku
w2
0

α2

(
1

e
− 1 + √π Erf (1)

)
, (17)

where Erf(x) is the error function. Since |y0 | � w0, this

argument still holds for nonzero y0. For the LCLS-like

situation analyzed in the subsequent section, the left hand

side of the inequality evaluates to 0.26.
With these two assumptions, Equations 10 and 11 take a

much simpler form,

dθ
dz
= 2kuη (18)

dη
dz
= 2χ1E0e−(y0+αz)/w

2
0 cos θ0 . (19)

These equations have simple solutions expressed in terms of

the error function. Of interest here is the microbunch angle,

αb = −(k)−1dθ/dy at a particular location z. The on-axis
(y0 = 0) angle is

αb,y0=0 =
E0 χ1w0
α2γ2z

(
2

zα
w0

− √
π Erf

(
zα
w0

))
cos θ0 . (20)

The scaling with z is somewhat hidden by the error func-
tion, but the rate at which the slope changes with z is more

elucidating,

dαb
dz

���
y0=0
=
2E0 χ1
αγ2z

(
1 − e−z

2α2/w2
0

)
cos θ0 . (21)

Evidently after a quick energy modulation for z � w0/α,
the microbunches continue to shear. The shearing continues

indefinitely in this model, similar to the first step in the

EEHG scheme [6]. However, a non-zero energy spread and

emittance, not included here, will also rapidly debunch the

beam.

Another feature of note is the importance of the initial

phase, θ0. When operating the Delta undulator, a phase

shifter immediately before the wiggler allows for a particular

phase, and therefore tilt.

A quantitative comparison of Equation 20 with Genesis

simulations are shown in the next section.

COMPARISON WITH SIMULATION
In this section we compare the predictions of the previ-

ous sections with Genesis [7] simulations. The simulation

conditions, seen in Table 1, were chosen to match exper-

iments done at LCLS. In order to generate a useful test,

a pre-microbunched beam is sent through a 3.2-m helical

afterburner.

The beam is pre-microbunched in a reverse tapered LCLS-

like undulator 9 undulator segments in length. This re-

verse tapered undulator generates a microbunched beam

and 0.34GW of background, linearly polarized radiation.

This background field is decomposed into right and left cir-

cular components, and sent into a helical afterburner with

variable K .

Table 1: Simulation Parameters

Parameter Value
Beam energy 4.37GeV

Energy spread 1.8MeV

Photon energy 850 eV

Peak current 2.5 kA

Emittance 0.4 μm

Afterburner length 3.2m

The predicted detune required for maximum power, Equa-

tion 8, is compared with the radiation produced in the heli-

cal afterburner in Figure 2. The coherent radiation model

matches simulation even though the afterburner is more than

a gain length long. The prediction (dashed) is compared

with Genesis results (solid) for α = 30 μrad and α = 60 μrad.
A 0-μrad K-scan is shown for comparison.
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Figure 2: The average power from a Genesis simulation

output as a function of afterburner K . A kick of 60 μrad

(green), 30 μrad (orange), and 0 μrad (blue) are plotted along

with the prediction from Equation 8.

Figure 3 compares the predicted angle at which the power

is maximized, Equation 9, with the simulated angle at which

power is maximized forα = 30 μrad. The prediction fails at a
large positive detune because the sinc2 function’s secondary

local maxima are ignored in Equation 9.
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Figure 3: The angle of maximum emission as a function of

K value is plotted for α = 30 μrad. Genesis results are dots,
while the solid line is Equation 9.
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Figure 4 compares the predicted microbunch angle, Equa-

tion 20, with the microbunch angle observed in Genesis

simulations after a 30-μrad kick. The phase is set to θ0 = 0
for comparison. The microbunch angle is calculated from

the Genesis output file by performing an angular transform

on the complex bunching factor for each output slice, and

averaging over all slices. In this way the average angle is

automatically weighted by the strength of the bunching in a

given slice.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-2

-1

0

1

2

3

4

5

z (m)

b
(

R
a
d
)

prediction

genesis

Figure 4: The predicted microbunch angle (solid) is plotted

against the microbunch angle calculated from a Genesis

output (dots).
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