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Abstract
Undulator averaging and non-averaging are in compromi-

sation between computational speed and reliability. It is hard
to catch the advantages of the both methods simultaneously.
In this report, we present a method that compromises the be-
tween the averaging and non-avergraging methods through
Lie map formalism.

INTRODUCTION

In a more general sense, the method of averaging can be
viewed by an instance of the re-formulation of the equations
of particle and field motion to a numerically or analytically
simpler form. Performance of such methods are based on
analytic capability of producing accurate but simple enough
equations and corresponding solutions that can alternatively
describe the original system. A simple averaging can over-
look the coupling between the betatron and wiggling motion,
nonlinear and high order field strength. This coupling can be
important when the undulator fringe field at entrance is not
well tapered so that the averaged closed orbit is offset by half
of the undulator oscillation amplitude. On the other hand,
if one can obtain re-formulated equations that can describe
the original system to a good accuracy, then it can have both
advantages of averaging and non-averaging method. Such a
robust set of equations can be derived using perturbative Lie
map. Since the map over undulator period integrate out the
fast undulator oscillation, the numerical performance can be
as good as the method of averaging.

OVERVIEW

To start with, we breifly review the pertrubative Lie map
method.

Lie Map Perturbation
Let the Hamiltonian be decomposed with slow S, fast F

and radiation field potentialV , i.e. H(z) = S(z)+F(z)+V(z)
where z is the longitudinal coordinate used as a time variable.
Then, the map of the Hamiltonian system can be written
by [1]

H(z |z0) = V(z |z0)F (z |z0)S(z |z0) , (1)

where z0 is the starting location of the integrator, S ≡ e:GS :,
F ≡ e:GF :,V ≡ e:GV : are slow, fast, field map respectively,
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and the generators of each map are

GS = −

∫ z

z0

dz :S : +
1
2

∫ z

z0

dz1

∫ z1

z0

dz2 ::S2 : S1 : +. . . (2)

GF = −

∫ z

z0

dz :F int : +
1
2

∫ z

z0

dz1

∫ z1

z0

dz2 ::F int
2 : F int

1 : +. . .

GV = −

∫ z

z0

dz :V int : +
1
2

∫ z

z0

dz1

∫ z1

z0

dz2 ::V int
2 :V int

1 :+. . . ,

where the interaction picture potentials are

F int
i ≡ S(zi |z0)F(zi) (3)

V int
i ≡ F (zi |z0)S(zi |z0)V(zi) .

Field Model
In order to calculate the field map GV for particle mo-

tion, one need to know the force field priori. Therefore,
the method we are presenting involves field modeling and
requires the field solver to solve for the model field. This
is a generalization of the spectral method. Since, we ex-
pect narrow-band and slowly varying envelope radiation, we
model the radiation vector potential normalized by e/mc as

ar ≡ <
5∑

h=1
[Kh + (z − z0) ∂zKh] eih(θ−kuz) , (4)

where θ = ks(z − ct) + kuz is the ponderomotive phase of
radiation ks and undulator ku wave numbers. Kh (x, y, θ)
is the model field envelope at each integration step. Note
that dependence of field amplitude on z is removed while
the longitudinal gradient ∂zKh is included based on slowly
varying envelope approximation. The gradient term and
can be important for fast growth mode when the pre-unched
beam is seeded [3], and thus can be beneficial for both aver-
aging and non-averaging method. The order of magnitude
of the normalized field strength is roughly about K1∼10−6

at saturation estimated using Prad ∼ 1.6ρPbeam and LCLS
parameters [2].

Effective Hamiltonian
In general, the solution of the perturbed map V is not

available, so it is hard to build a high order map out of the
perturbed Lie map. On the other hand, an effective Hamil-
tonian can be obtained using Baker-Campbell-Hausdorff
(BCH) formula.

Hef f = −
1
L
(GS + GF + GV ) (5)

−
1

2L
(: GS : GF+ : GS : GV+ : GF : GV ) + . . .

Since the fast oscillating motion is already integrated out,
re-concatenation of the perturbed Lie map through BCH
formula can be well truncated within few orders.
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SLOW MAP

The normalized Hamiltonian for a particle in planar un-
dulator is

H
(
x, px, y, py, θ, γ/ks; z

)
(6)

= −

√
γ2 − 1 − (px − ax)

2 −
(
py − ay

)2
+ (ku + ks)

γ

ks
,

where γ is the normalized energy, and ax,y = eAx,y/mc
are normalized vector potentials. In a planar undulator the
vector potentials are

ax = K cosh (kx x) cosh
(
ky y

)
cos (kuz) + ar

ay = K
kx
ky

sinh (kx x) sinh
(
ky y

)
cos (kuz) ,

where K is the normalized undulator peak (not r.m.s.)
strength and k2

u = k2
x + k2

y . Here cos (kuz) is used instead
of sin (kuz) assuming the undulator fringe field is tapered
so that the averaged closed orbit is on-axis. We define the
averaged Hamiltonian Eq. (6) as slow Hamiltonian,

S ≡
ku
ks
γ +

1
2γ

[
1 + p2

x + p2
y +

K2

2

(
1 + k2

x x2 + k2
y y

2
)]

+
K2

4γ

[
1
3

(
k4
x x4 + k4

y y
4
)
+ k2

xk2
u x2y2

]
+

1
(2γ)3

(
1 + K2 +

3
8

K4
)
. (7)

Note that γ−3 term is about same order of magnitude
with the field potential when K1 ∼ O

(
10−6) and γ ∼

O
(
103) . We truncated Hamiltonain at O

(
10−12) assum-

ing kx x, ky y, px, py ∼ O
(
10−2) and γ∼O

(
103) . Since the

slow Hamiltonain is autonomous, the Lie map generator is
simply

GS (L) = −SL . (8)

FAST MAP

We define the fast Hamiltonian by non-averaged part of
the Hamilonian independent of the radiation field, i.e., F ≡
[H − S]Kh=0. After integrations, the generator of the fast
map become

GF = −L
K3k2

x

k2
uγ3

(
K
16
−

px

3

)
(9)

where we assumed the initial location z0 and step size L
are multiple of undulator period and included 3rd order of
Magnus series not shown in Eq. (2). Although, it is as small
as γ−3, it is about same order of magnitude with radiation
field potential when K1∼O

(
10−6) and γ∼O

(
103) .

FIELD MAP
The interaction picture potential of the radiation field for

each harmonic h is

V int = −

(
Keff
γ

cos (kuz) +
px

γ

)
K int
h

[−∞,∞]∑
l,m

Jhξ
l

Jhζm eihψ
int
s

ψint
s ≡ hθ + h Ûθδz − (2l + m + h) kuz

K int
h = Kh +

(
Keff
kuγ

sin (kuz) +
px

γ
δz

)
∂Kh

∂x

+
py
γ
δz
∂Kh

∂y
+ δz∂zKh , (10)

where Ja
n is the Bessel function of order n with argument a,

δz ≡ z − z0, and

Ûθ ≡ ku −
ks

2γ2

(
1 + p2

x + p2
y +

K2
eff
2

)
Keff ≡ K

(
1 + k2

x

x2

2
+ k2

y

y2

2

)
.

Then, the Lie map generator can be written by the following
form

GV = L
(

Keff
γ

∫
C

+
px

γ

∫
0

)
Kheihθ

+L

[
K2

eff
kuγ2

∫
SC

+
Keff
γ

px

γ

(∫
1C
+

1
ku

∫
S

)]
∂xKheihθ

+L
Keff
γ

∫
1C

(
py
γ
∂yKh + ∂zKh

)
eihθ , (11)

where
∫
i
are integration parameters. Due to limited space

in this paper, we write down few terms of the leading order
integration parameter,∫

C

≡
e−ihθ

L

∫ L

0
d (δz) cosψueihψ

int
s

=
1
2

(
Jhξ
− h+1

2
+ Jhξ1−h

2

)
+

h Ûθ
4ku

(
Jhξ
− h+1

2
− Jhξ1−h

2

)
+

∑
l,− h+1

2 , 1−h
2

h Ûθ
ku

(2l + h) JhξR
l

(2l + h + 1) (2l + h − 1)

+ . . . (12)

The first term is so-called coupling factor. Although Ûθ/ku is
small due to resonance condition, it is as important as the
coupling factor contribution on dθ/dz as can be seen from
Eq. (13)

−
∂GV
∂γ
∝

1
2γ2

(
Jhξ
− h+1

2
+ Jhξ1−h

2

)
−

hks
4γ4ku

(
Jhξ
− h+1

2
− Jhξ1−h

2

)
+. . .

(13)

COMPARISON
Here, we present comparison between our method and and

GENESIS pusher [4]. We take the particle tracking using
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original Hamiltonian Eq. (6) with small enough time step
to represent exact solution. In order to compare the particle
pusher independent of the field solver, the radiation field
is modeled by transversely Gaussian envelope of rms size
same with the electron beam. Undulator parameters used are
K = 1.5, kx = ky = ku/

√
2, λu = 2.5 cm. We prepare ini-

tially matched Gaussian electron beam truncated at 3σ with
normalized emittance 1µm and σγ/γ = 0.01. In order to
quantify the error, we use |θ−θexact |/2π and record the error
for each particles. Integration step size is chosen by one un-
dulator period at which the numerical error due to large step
size showed convergence. In other words, the error shown in
figures originates from the inaccuracy of the re-formulated
equations by averaging or Lie map method. Figure 1 shows
the error in the absence of the radiation field showing an
order of magnitude better accuracy. Figure 2 shows the error
under radiation field whose normalized strength isK = 10−6

which corresponds to the field strength near saturation in
case of LCLS. Figure 3 shows the error under exponentially
growing radiation field with growth rate LG ∼ 102λu and
initial strength K = 10−8. Inclusion longitudinal field gra-
dient in Eq. (10), made the accuracy as good as the zero
radiation case of Fig. 1. This can be especially important
when much shorter gain length < 102λu is achieved.

Figure 1: Ponderomotive phase error in the absence of the
radiation field. Top and bottom corresponds to γ = 103

and γ = 104 respectively. Thick line represent the average,
shadowed area corresponds to the error of 90% and 95%
population for lighter and darker shade. The dashed line
corresponds to the maximum error.

CONCLUSION
A compromised method between averaging and non-

averaging method is presented and tested. More robust
equations of motion than undulator averaging is derived
using perturbative Lie map. Simulation result shows good
improvement on the accuracy while the computation time
was only about 1.3 times of the method of averaging. In
order to build a Lie map, we had to model the radiation field.
The modeled field ansatz is what we need to solve in field
solver which is our next research plan.

Figure 2: Ponderomotive phase error at radiation field
strength K = 10−6. Top and bottom corresponds to γ = 103

and γ = 104 respectively.

Figure 3: Ponderomotive phase error at initial radiation
field strength K = 10−8 and exponentially growing by rate
LG ∼ 102λu . Top and bottom corresponds to γ = 103 and
γ = 104 respectively.

ACKNOWLEDGEMENT
We appreciate valuable discussion with Gregory Penn.

This work is supported by the Director of the Office of Sci-
ence of the US Department of Energy under Contract no.
DEAC02-05CH11231

REFERENCE
[1] A. Dragt, “Lie Methods for Nonlinear Dynamics”,

http://www.physics.umd.edu/dsat

[2] https://portal.slac.stanford.edu/sites/
lclscore_public/Accelerator_Physics_Published_
Documents/LCLS-parameters-3-22-17.pdf

[3] L. H. Yu., “Generation of intense uv radiation by subharmon-
ically seeded single-pass free-electron lasers”, Phys. Rev. A,
vol. 44, p. 5178–5193, 1991.

[4] S. Reiche, “GENESIS 1.3: A fully 3D time-dependent FEL
simulation code”, Nucl. Instrum. Methods Phys. Res., Sect. A,
vol. 429, p. 243, 1999.

38th International Free Electron Laser Conference FEL2017, Santa Fe, NM, USA JACoW Publishing
ISBN: 978-3-95450-179-3 doi:10.18429/JACoW-FEL2017-WEP073

FEL Theory
WEP073

551

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


