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Abstract
Conventional treatments of synchrotron radiation in elec-

tron beams treat the radiation as a non-Hamiltonian aspect to
the beam dynamics. However, the radiation can be modeled
with an electromagnetic Hamiltonian. We present a period-
averaged treatment of the FEL problem which includes the
Hamiltonian aspects of the coupled electron-radiation dy-
namics. This approach is then applied to two problems: a 3D
split-operator symplectic integrator, and a 1D single-mode
FEL treated using Hamiltonian perturbation theory.

SYMPLECTIC MAP TREATMENT
Symplectic maps are useful for computing invariants

in Hamiltonian systems and deriving symplectic integra-
tion schemes (among others) in single- or few-particle sys-
tems. Recent work has highlighted their use for studying
many-body systems and self-consistent electromagnetic al-
gorithms. Maps can also be applied to the period-averaged
free-electron laser problem, using the factored map formal-
ism and a first order Magnus expansion.

We begin with the Lagrangian for a system of relativistic
electrons in a mix of external and self-consistent electromag-
netic fields [1–3]:

L =
∑
j

−mc2

√
1 −

(
Ûxj

c

)2
− eφ(xj) +

e
c
Ûxj · A(xj)

+
1

8π

∫
dx

(
1
c
∂A
∂t
− ∇φ

)2
− (∇ × A)2.

(1)

It is convenient to use s, the longitudinal variable, as the
independent variable. We can do this by noting that the
action integral A =

∫
dtL, and that dt = (dt/ds)ds is a

valid transformation of the integral as long as ds/dt , 0.
This allows us to change the independent variable to the
s-dependent Lagrangian S as

S =
∑
j

−mc2

√√√(
1
c

dτj
ds

)2
−

(
(x⊥)′j

c

)2

+
e
c
τ′jφ(xj) +

e
c
(x′j)⊥ · A⊥(xj) +

e
c

As(xj)

−
1

8π
1
c

∫
dx⊥dτ

(
∂A
∂τ
+ ∇φ

)2
− (∇ × A)2

(2)
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where the prime denotes total differentiation with respect to
s and we have defined τ = −ct for dimensional convenience,
so all the generalized coordinates have the same units. The
action integral remains unchanged.
The scalar potential comes purely from self-consistent

source terms – there are no electrostatic elements in our
beamline – and A can be broken into external and self-
consistent components. We need not worry about the dy-
namics of the external vector potentials. For simplicity, we
can make the choice that A(sc)s = 0 (equivalent to the Weyl
gauge φ = 0 when we use t as the independent variable)
and assume that φ = 0 which neglects space charge effects.
This leaves A⊥ = A(ext .)⊥ + Ar and As = A(ext .)s , which cap-
tures the undulator fields and any external focusing elements
like quadrupoles or dipoles, as well as the self-consistent
radiation field.

We write the radiation field as

Ar =
mc
e

ep
∑
σ

uσeik
(σ)
⊥ ·x⊥+ik

(σ)
0 τ + c.c. (3)

for a fixed, generally complex, polarization vector ep =
px x̂ + py ŷ with unit norm |px |

2 + |py |2 = 1, and a range of
perpendicular k-vectors and τ-components. The individual
uσ(s) give the complex amplitude of a given radiation mode
as a function of s. This gives the Lagrangian in terms of the
individual mode amplitudes for the radiation, the external
fields, and the particles to be:

S =
∑
j

−mc

√(
τ′j

)2
−

(
(x′⊥)j

)2

+
e
c
(x′⊥)j · (A

(ext .)
⊥ (xj) + Ar ) +

e
c

As(xj)

−
1

8π
1
c

(mc
e

)2∑
σ

(
(k(σ)0 )

2 − |pyk(σ)x − pxk(σ)y |
2
)
|uσ |2 − |u′σ |

2

(4)

which then gives the canonical momenta for the electrons as
well as for the individual modes as:

pτ =
mcτ′√

τ′2 − 1 − (x′⊥)2
,

p⊥ =
mcx′⊥√

τ′2 − 1 − (x′⊥)2
−

e
c
(A(ext .)⊥ (xj) + Ar )

(5)

and

Pσ = −
1

4πc

(mc
e

)2
u′∗σ (6)
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for each individual particle and mode.
To compute symplectic maps, we must compute the

Hamiltonian for this system, which is taken through the usual
Legendre transformation over the j particle indices and the
σ mode indices. The resulting Hamiltonian is given by:

H = −
∑
j

√(
p(j)τ

)2
−

(
(p(j)⊥ −

e
c
(A(ext .)⊥ (xj) + Ar )

)2
−m2c2

+
e
c

As(xj) +
∑
σ

1
2

4π
c

( e
mc

)2
|Pσ |

2

+
1
2

c
4π

(mc
e

)2 (
(k(σ)0 )

2 − |pyk(σ)x − pxk(σ)y |
2
)
|uσ |2.

(7)

Assuming that pτ is the dominant momentum component,
which it usually is, we can Taylor expand the radical in
powers of 1/pτ to get the approximate Hamiltonian for high
energy electrons:

H≈
∑
j

−p(j)τ +
1
2

m2c2

p(j)τ
+

1
2

(
(p(j)⊥ −

e
c (A

(ext .)
⊥ (xj) + Ar )

)2

p(j)τ
+

e
c

As+
∑
σ

1
2

4π
c

( e
mc

)2
|Pσ |

2+
1
2

c
4π

(mc
e

)2
Ω

2
σ |uσ |

2,

(8)

with Ω2
σ = (k

(σ)
0 )

2 − |pyk(σ)x − pxk(σ)y |
2 being the natural

frequency of the σ mode.
We can then break up A(ext .)⊥ into the on-axis wiggler field

and the off-axis wiggler field as

A(ext .)⊥ = Aw(s) + A f (x, y, s), (9)

which allows us to expand the perpendicular momentum
term and break the Hamiltonian into the sum of the one-
dimensional FEL Hamiltonian and the transverse focusing
Hamiltonian.
The transverse canonical momentum term expands to(
p⊥−

e
c
(Aw+A f +Ar )

)2
=

(
p⊥ −

e
c

A f

)2
+(

p⊥ −
e
c

A f

)
· (Aw + Ar )+

|Aw |
2 + 2Aw · Ar + |Ar |

2.

(10)

The first term represents the finite transverse emittance dy-
namics and the undulator focusing terms. The second term is
the dot product of the average transverse velocity with the un-
dulator and radiation fields, and averages to zero. |Ar |

2 will
introduce the ponderomotive force on the average transverse
particle motion, and this is also negligible.

Dropping these negligible terms leaves the FEL Hamilto-
nian as

H ≈
∑
j

−p(j)τ +
1
2

m2c2

p(j)τ
+

1
2

(
p(j)⊥ −

e
cA f

)2
+ (e/c)2 |Aw |

2 + 2(e/c)2Aw · Ar

p(j)τ
+

e
c

As +
∑
σ

1
2

4π
c

( e
mc

)2
|Pσ |

2 +
1
2

c
4π

(mc
e

)2
Ω

2
σ |uσ |

2.

(11)

This is the Hamiltonian for relativistic particles in a radiation
field and an undulator, with potential external focusing forces.
At this point, more approximations are possible, such as
linearizing p(j)τ = −γ0mc − δ(j) with δ � γ0mc. We can
also break the Hamiltonian up, for formal convenience, into
H0,H⊥ andVI for the electromagnetic, longitudinal, and
transverse dynamics, respectively:

H0 =
∑
j

−p(j)τ +
1
2

m2c2

p(j)τ
+

1
2

( e
c

)2 |Aw |
2

p(j)τ
+∑

σ

1
2

4π
c

( e
mc

)2
|Pσ |

2 +
1
2

c
4π

(mc
e

)2
Ω

2
σ |uσ |

2,

H⊥ =
1
2

∑
j

(
p(j)⊥ −

e
cA f

)2

p(j)τ
+

e
c

As,

and

VI =2
( e

c

)2 Aw · Ar

p(j)τ
. (12)

The combinationH0 +VI , if we assume k(σ)⊥ = 0, is the
one-dimensional FEL Hamiltonian. H⊥ captures the trans-
verse dynamics, assuming as we have that there is no space
charge – if we were to include space charge in this treatment
there would be a self-consistent As or φ and these would
also contribute to the transverse and longitudinal dynamics.
We are now in a position to compute symplectic maps

over a single wiggler period,Ms→s+lw .
The symplectic map satisfies the operator differential

equation
M ′ =M :−H : (13)

where :−H : is the Hamiltonian Lie operator [4–6], which
generates s transformations on the particle-field coupled
phase space. There are multiple applications to this map: (1)
we can compute a map for the one-dimensional FEL problem
that includes the field terms; (2) we can derive symplectic
integrators for the 1D and 3D FEL Hamiltonians, especially
for tapering and other more schemes; (3) we can compute
invariants for the 1D (and, less likely, but possibly) the 3D
FEL Hamiltonians.

For the 1D FEL problem, we have that

M ′1D =M1D :−H0 −VI : (14)
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where H0 is exactly integrable – it is the radiation modes
as harmonic oscillators with mass m

√
c/4πe and frequency

Ωσ and motion in a drift where |Aw |
2 may have some s-

dependence for a planar undulator, for example.
Using the factored map formalism, we can writeM1D =

M
(I )
1DM

(0)
1D , where

(M
(0)
1D)
′ =M

(0)
1D :−H0 : (15)

and

(M
(I )
1D)
′ =M

(I )
1D

(
M
(0)
1D :−VI :(M(0)1D)

−1
)
. (16)

The transformation ofVI integrates along the unperturbed
trajectory, as the similarity transformation on the Lie opera-
tor passes through the colons and gives that

M
(0)
1D :−VI :(M(0)1D)

−1 = :−M(0)1DVI : . (17)

The unperturbed trajectory ends up giving the transformed
interaction potential as

M
(0)
1DVI =

2e2

γ0mc3 Aw×

ep
mc
e

∑
σ

∑
j

(
uσ +

e
mc
P∗σ

)
eiΩ

(σ)s×

eik
(σ)
⊥ ·x

( j)
⊥ +ik

(σ)
0 (τ( j)−ψ( j)(s)) + c.c.

(18)

where

ψ(s) = −s−
1
2

m2c2

(p(j)τ )2
s−

1
2

m2c2

(p(j)τ )2

( e
c

)2 ∫ s

s0

ds′ |Aw |
2 (19)

is the unperturbed drift trajectory.
To first order in a Magnus expansion [7, 8], we can com-

pute the interaction map to be given by

M
(I )
1D ≈ exp

{
−

∫ s

s0

ds′ :M(0)1DVI :+O(s2)

}
. (20)

This begins to introduce the 1D FEL resonance condition, as
the exponent of the map is proportional to just s if the reso-
nant condition is satisfied. A full analysis ofM(I )1D is beyond
the scope of this proceeding, as it contains the entire FEL
interaction including saturation, if it is taken to sufficiently
long s.
We can also consider the 3D FEL problem numerically

by using a split-operator approach. We can approximate the
full map as the symmetric product of partial maps:

Ms0→s0+l2 ≈ M
(⊥)

(s0→s0+l2)/2
M1DM

(⊥)

(s0→s0+l+2)/2 (21)

whereM(⊥)
(s0→s0+l2)/2

integrates the perpendicular Hamilto-
nian weighted by a factor of a half from s0 to s0 + l. We can
carry over the 1D map, and approximate the perpendicular
map using the same first order Magnus expansion:

M
(⊥)

(s0→s0+lw )/2
≈

exp

−
1
2

∫ s0+lw

s0

:
∑
j

(
p(j)⊥ −

e
cA f

)2

2p(j)τ
+

e
c

As :
 .

(22)

If we assume that As has no explicit s dependence over
the range of integration and that

∫ s0+lw
s0

A f = 0, which is
the case if A f is periodic with the wiggler period and l2 is
the undulator period, then this maps becomes

M
(⊥)

(s0→s0+l2)/2
≈

exp
−

1
2
:
∑
j

(p(j)⊥ )2 −
(
e
c

)2
〈A2

f 〉

2p(j)τ
+

e
c

As : lw


(23)

where we have averaged A2
f over the wiggler period. This

map can then be split in half again as a drift-kick map, giving
the correct trajectories to order l3

w .

CONCLUSION
In this report, we have highlighted a derivation of sym-

plectic maps as can be applied to the one-dimensional or
three-dimensional free-electron laser problem. These maps
could be applied to computing invariants and saturation
effects in one-dimensional free-electron lasers or for com-
puting second-order symplectic integrators for the three-
dimensional free-electron laser. It remains to apply these
approaches and determine the applicability of these sym-
plectic maps.
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