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Abstract
The X-ray FEL oscillator has the potential to be a revolu-

tionary new light source providing unprecedented stability in
a narrow bandwidth [1]. However, a detailed understanding
of cavity tolerance and stability has only begun, and there are
presently no suitable simulation tools. To address this issue,
we have developed a fast FEL oscillator code that discretizes
the field using a Gauss-Hermite mode expansion of the os-
cillator cavity. Errors in crystal alignment result in a mixing
of the modes that is easily modeled with a loss and coupling
matrix. We show first results from our code, including the
effects of static and time-varying crystal misalignments.

INTRODUCTION
The x-ray FEL oscillator [1, 2], in which the output from

a low-gain FEL is returned to interact with subsequent elec-
tron bunches by an x-ray cavity built of Bragg crystals and
focusing elements, has garnered much interest over the past
decade. In this paper we will focus on how the output of a
single frequency component can be affected by crystal tilts,
as this will provide the first look into what tolerances we
require for the crystal optics.

XFELO CAVITY MODES
We expand the transverse profile using the Gauss-Hermite

modes defined by the optical cavity. Along x we write

E(x; z) =
∑̀ E`(z) exp

[
−

x2(1+iz/zR )
4σ2

x (1+z2/z2
R )

]
√

2``!σx(1 + z2/z2
R)

1/2

× H`

[
x/σx√

2(1+z2/z2
R )

]
e−i(`+1/2)atan(z/zR )

(1)

=
∑̀
E`(z)M`(x; z), (2)

where M` is the mode shape of the `th Gauss-Hermite mode
that is defined in terms of the rms width σx and the Rayleigh
range zR = σx/σx′ = 2k1σ

2
x for a paraxial field with carrier

wavevector k1 = 2π/λ1; a similar expansion holds in y.
Ignoring slippage, the FEL field equation is then

d
dz
E`,m = −

ek1K[JJ]
4γ0ε0

∑
j

e−iθ j M`(xj)Mm(yj), (3)

where the sum is over all particles in the FEL slice, γ0 is the
reference energy, the ponderomotive phase θ j(z) = (k1 +
ku)z − ck1tj(z) for a particle with time tj moving in an
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electromagnetic wave with wavenumber k1 = 2π/λ1 and
undulator wavenumber ku = 2π/λu , e and ε0 are the electric
charge and permittivity of free space, and [JJ] is the Bessel
function factor for an undulator with deflection parameter
K . The equations of motion for the phase θ j and the scaled
particle energy difference ηj = (γj − γ0)/γ0 are

dθ j
dz
= 2kuηj −

k1
2
(p2

j + K2k2
ux

2
j/2γ

2) (4)

dηj
dz
=

eK[JJ]
2mc2γ2

0

∑̀
,m

E`,meiθ j M`(xj)Mm(yj) + c.c., (5)

where transverse position and angle are x j and x ′j .
Upon exiting the undulator, the field is returned to the

undulator beginning by the x-ray cavity. For a perfectly
aligned cavity this results in some loss for each mode E` , but
imperfections and misalignments result in mode coupling
and effective loss in the fundamental Gaussian mode.

At lowest order misalignments act to shift the optical axis
by a position and angle at each pass that can be found by
tracking a ray through the system. The result is that the
optical axis becomes offset in position by Xd = (Xd,Yd),
and in angle by Θd = (θ, ψ). Then, the displaced field at the
beginning of the undulator for pass n + 1 is related to the
field at the end of the undulator from pass n via

E (n+1)(x; 0) = (1 − α)eik(x−Xd )·Θd

× E (n)(x − Xd; Lu),
(6)

where α is the amplitude loss due to imperfect reflectivity. To
transform this into a relationship between mode expansion
coefficients, we need to project the displaced field onto the
Gauss-Hermite basis. We will do this explicitly for the x-
direction only, as expressions for y are essentially the same.
We insert the expansion (1)-(2), multiply by the mode M`(x),
and integrate over x to obtain

E
(n+1)
`
(0) = (1 − α)

∫
dx eikθ(x−Xd )M`(x)

×
∑̀
′

M`′(x − Xd)E
(n)
`′
(Lu).

(7)

= (1 − α)
∑̀
′

P`,`′(θ, Xd)E
(n)
`′
(Lu), (8)

where we have defined the projection operator P as shown.
It turns out that this integral can be done in terms of the
associated Laguerre polynominal Lm

n (x); if ` ≥ `′ we have

P`,`′ =
√
`′!/`!e−ik1Xdθ/2e−[(Xd/σx )

2+(θ/σx′ )
2]/8

×

(
Xd + izRθ
√

2σx

)`−`′
L`−`

′

`′

(
X2
d
+ z2

Rθ
2

4σ2
x

)
,

(9)
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Table 1: XFELO Parameters for Simulations

Name Symbol Value
Energy γ0mc2 7 GeV
Energy spread σγ/γ0 2 × 10−4

Normalized emittance εn 0.2mm ·mrad
Peak current I 10 A
Undulator periods Nu 3000
Undulator length Lu 53 m
Rayleigh range ZR 10 m

while the expression for `′ > ` can be obtained by exchang-
ing ` and `′ and setting Xd → −Xd in the second line of
(9). The code consists of solving the FEL equations (3)-(5),
followed by applying the cavity misalignment operation (8)
with P defined in (9).

RESULTS
The FEL gain can be represented as a matrix G that joins

the field coefficient E(n)
`
(0) at the beginning of the nth pass

to that at the end of the undulator in the following manner:

E
(n)
`
(Lu) =

∑̀
′

G`,`′E
(n)
`′
(0). (10)

In the linear gain regime G is independent of E, while in
general it is found by solving the FEL equations (3)-(5). Our
first test of the code was to compare the the gain matrix
with that of the theory in [3]. The test example assumed an
XFELO with nominal gain G00 ≈ 0.184 + 0.075i, and we
found agreement to better than 10% for both the real and
imaginary parts of the 5×5 submatrix joining the five lowest
order Gauss-Hermite modes. To go further, we write out the
complete mapping from pass to pass as

E(n+1) = (1 − α)P(Θd, Xd)(1 + G)E
(n). (11)

If we subtract E(n) from both sides and approximate E(n+1)−
E(n) ≈ dE(n)/dn → ΛE as is appropriate for a low gain
system in the linear gain regime, we can rewrite (11) as the
following linear matrix system

ΛE = [(1 − α)P(Θd, Xd)(1 + G) − 1]E, (12)

where Λ is a complex growth rate (eigenvalue). We solved
this for various optical axis displacements and compared the
results to simulations in Fig. 1. For these and the following
simulations we use the XFELO parameters suggested in [4]
and listed in Table 1, although subsequent work has shown
that significantly higher gains can be achieved (see, e.g., [5]);
here the nominal power gain 2<(G00) ≈ 0.36, the losses
2α = 0.2, while the displacement Xd/σr = 0.1 corresponds
to a crystal tilt of about 20 nrad (the scaled angular offset
θ/σr′ ≈ 0.1Xd/σr is small).
Next, we’ll want to look at how misalignments affect sat-

urated output of an XFELO. We begin by considering static
misalignments for the same parameters as in Table 1. From

Figure 1: Comparison of theory (solid lines) and simulation
(points) for the growth rate (a) and mode content (b) of an
XFELO that has a static misalignment leading to a displaced
optical axis of Xd/σr . Parameters are from Table 1.

Fig. 1 we find that the gain will vanish and the output will
be near zero when the crystal misalignments result in a dis-
placement Xd ≈ 0.15σr . Thus, we chose 0 ≤ Xd ≤ 0.1σr ,
which roughly corresponds to varying the crystal misalign-
ment between 0 and 20 nrad. We plot the results of the static
misalignment in Fig. 2(a). We find that as the net linear gain
2Λ decreases from about 0.12 for perfect alignment to 0.04
when Xd = 0.1σr , the output power reduces from 1.2 MW
to ∼ .23 MW. Note that at the low end only about 62% of
this power is contained in the Gaussian mode, while ∼ 30%
is in antisymmetric modes.
In practice the crystal tilts will vary with time. From

general physical principles we expect variations that are
much slower than the cavity ring-down time will directly
imprint themselves upon the output, while fluctuations that
occur over much faster time-scales will be averaged over;
in other words, in the former case the output power will
vary as a function of time such that its value matches that
predicted by the steady-state results in Fig. 1, while in the
latter case the output should be relatively constant but at
a somewhat lower value. We plot results from these two
extreme cases in Fig. 2(b) and (c). Panel (b) plots the power
as a function of pass number when the crystal tilt oscillates
with a period T = 400, which is much longer than 2π times
the ring-down time 2π/α ∼ 60. In this case the output power
is approximately given by

Pout ≈ Pideal cos2(2πn/T) + PXd
sin2(2πn/T), (13)
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Figure 2: Power output as a function of pass number for cavity misalignments leading to a displaced optical axis of
Xd/σr . Panel (a) plots steady-state output for static misalignments, while (b) plots the output for slow variations given
by Xd cos(2πn/T) for T = 400, for which the output oscillates with half the period T/2 and the maxima and minima are
roughly defined by the static predictions in panel (a). Panel (c) plots the output for random variations on a pass-to-pass
basis, where the same pseudo-random sequence is used but with different maximum amplitudes Xmax.

and the power oscillates with a period T/2 between the value
its ideal value Pideal and that with the maximal tilt PXd

.
In the other extreme we can imagine a crystal tilt that

fluctuates randomly from pass-to-pass. We show three such
cases in Fig. 2(c), where we assign the optical axis displace-
ment at any pass the value r Xmax, with r a random num-
ber between −1 and 1. We see that the rms (maximum)
power fluctuations are less than 4% (10%) up to value of
Xd = 0.1σr , while even Xd = 0.2σr produces useful output
whose rms variations are . 10%. The general features of
each plot are quite similar (e.g., the dip in power near pass
800) because we chose the same pseudo-random sequence
for all cases. Interestingly, the mean output power does not
significantly change for the random variations chosen.
Finally, we would like to understand how power fluctua-

tions occuring at a variety of time scales affect the output. As
a first step, we consider sinusoidal perturbations that have dif-
ferent periods. This will provide some insight into how fluc-
tuations characterized by a particular power spectrum will
degrade performance. We show the results of this first study
in Fig. 3. Panel (a) shows the output fluctuations for an op-
tical axis displacement of Xd cos(2πn/T) with Xd = 0.1σr

and various perturbation periods T , while (b) plot the same
thing for Xd = 0.1σr . Both cases essentially follow Eq. (13)
when the period of variation T ≥ 200 � 2π/α = 60. As the
period approaches the cavity ring-down, T = 100 and 50,
the output still oscillates with a period of approximately T/2,
but with a smaller amplitude of the oscillation: the maxi-
mum output power is less than Pideal and the minimum power
is greater than PXd

. Finally, for variations at the fastest scale
T = 20, which is about one-third the cavity ring-down time,
the power variations are quite small; panel (a) shows rms
flucuations of 1.3% when Xd = 0.1σr , while the power vari-
ations in panel (b) where Xd = 0.5σr are ∼ 0.4%. Both of
these results are consistent with the random fluctuations of
Fig. 2(c).

CONCLUSIONS
We have developed a code that simulates the FEL oscil-

lator by representing the field as a sum of its cavity modes.

Figure 3: Saturated FEL output for an oscillating optical
axis displacement of Xd cos(2πn/T), where Xd = 0.1σr in
panel (a), and Xd = 0.05σr in panel (b).

When the FEL gain is low the field is well-represented by a
few low-order modes, and the code is very efficient. Adding
imperfections of the cavity can be done in a straightforward
manner, and we have illustrated this by examining how the
XFELO output varies with a variety of fluctuating crystal
misalignments. The results here have been for a single cavity
configuration, and future work will be to do similar tests
when the FEL gain is higher, and for cavities that are de-
signed to balance the requirements of FEL gain with the
desire to have a system that is more robust to various cavity
fluctuations and imperfections.
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