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Abstract
In this paper we explore whether we can at present find

a theoretical basis for non-standard, sub-Poissonian photon
statistics in the coherent spontaneous harmonic radiation of
an FEL as was claimed to have been measured with the Mark
III FEL [1]. We develop a one dimensional quantum FEL
oscillator model of the harmonic radiation in the linear gain
regime to calculate the photon statistics. According to our
study, it seems unlikely that the photon statistics for an FEL
oscillator starting from the noise could be sub-Poissonian.

INTRODUCTION
This is the second, theoretical part of our study into pos-

sible non-standard, sub-Poissonian photon statistics for har-
monic emission from an FEL. The motivation is an exper-
iment by Chen and Madey [1], which claimed to have ob-
served sub-Poissoinian statistics at the seventh harmonic
during the linear gain regime of the MARK III FEL oscil-
lator. In our first paper we take a critical look at the experi-
ment [2]; here, we revisit the standard theory of FEL photon
statistics of the fundamental mode starting from the noise,
and then develop the simplest quantum extension of the clas-
sical theory of harmonic radiation production as driven by
the fundamental mode. We include the cavity loss with a
beam splitter model, and compute the photon statistics of
the harmonic modes. We show that the statistics cannot be
sub-Poissonian for any initial state of the electrons.

A MODEL OF LIGHT EMITTED BY
RANDOMLY DISTRIBUTED ELECTRONS

First, we revisit the photon statistics of undulator radiation
when there is no significant bunching in the electron beam.
The variance of the number of photons for coherent wave
trains emitted by randomly distributed electrons (Fig. 1)
is given by [3, 4]:

⟨(δn)2⟩ = ⟨(δn)2⟩Q + ⟨(δn)2⟩C ; (1)

⟨(δn)2⟩Q is the portion of variance originating from quantum
mechanics, whereas ⟨(δn)2⟩C arises from classical fluctu-
ation of the electrons [5]. Consequently, the Fano factor
F = ⟨(δn)2 ⟩

⟨n⟩ of the photon statistics can also be decomposed
into the quantum and classical portions:

F = FQ + FC . (2)

∗ jwpark@hawaii.edu

When the mode number M = tp/τcoh ≫ 1 (tp is the pulse
length and τcoh is the coherence time) one can write [4, 5]

FQ =
⟨(δn)2⟩Q

⟨n⟩
= 1, FC =

⟨n⟩
M
. (3)

Thus, in this case F > 1 and the photon statistics is super-
Poissonian.

Figure 1: A sum of coherent wave trains emitted by randomly
distributed electrons [5].

PHOTON STATISTICS OF THE
FUNDAMENTAL MODE

A one Dimensional Quantum FEL Model
To investigate the photon statistics, we shall develop a

quantum model of the FEL oscillator starting from the noise.
In this model we will only consider one frequency mode of
the field, since in the linear gain regime the FEL acts as a
linear amplifier and all frequency components are indepen-
dent [6]. When energy spread can be neglected the evolution
of the electric field operator as the pass number n increases
becomes [5, 7]

a1,n+1 = ga1,n + Fn; (4)

the first subscript of field operator a represents the harmonic
number, the second denotes the cavity round-trip number,
and |g |2 is the gain per cavity round-trip. An explicit expres-
sion for g is:

g ≡
1
3

∑
α

e−iµα2kuρLu , (5)

where µα are the three roots of
(
µ− ∆ν2ρ

) (
µ2 −

q2

4
)
= 1, ∆ν =

ω−ω1
ω1

, ω1 is the fundamental mode’s angular frequency, q =
ℏω1

ργrmc2 is the ratio of the characteristic photon energy to

39th Free Electron Laser Conf. FEL2019, Hamburg, Germany JACoW Publishing
ISBN: 978-3-95450-210-3 doi:10.18429/JACoW-FEL2019-TUP054

FEL Theory
TUP054

165

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I



the energy bandwidth of the FEL (also called the quantum
FEL parameter), and γr is the resonant Lorentz factor of the
electron, Lu is the undulator length, ku is the undulator’s
wave number, and ρ is the FEL Pierce parameter. We assume
that the electron beam is fresh at the beginning of each pass,
and its operator at the end of the nth pass is

Fn = −i
∑
α

Υαe−iµα2kuρLuBn0

− i
∑
α

Υα

µα
e−iµα2kuρLuPn0,

(6)

where Υα ≡
µα

(µα−µβ )(µα−µγ )
, and Bn0 and Pn0 are the initial

bunching and collective momentum of the electron beam,
respectively.

Photon Statistics
We incorporate cavity loss using the beam splitter model

[8, 9], in which the finite reflectivity √
ηh at harmonic h

is modeled by the division of the signal into the “output”
portion √

ηheiφ1ah and the “unused” part
√

1 − ηheiφ1,uah,u .
Here, ϕh,n and ϕh,u,n are the phase shift for the output field
and unused field, respectively, and each of these two fields
separately satisfy the commutation relation [a,a†] but com-
mute with each other. Then, we have the quantum iterative
relation

a1,n+1 = g
√
η1eiφ1,na1,n + Fn

+ g
√

1 − η1eiφ1,u ,na1,u,n.
(7)

Note that the commutation relation [a1,n,a
†

1,n] = 1 is pre-
served. Solving the recursion relation, we obtain

a1,n = (g
√
η1)

n−1eiΦ1a1,1

+

n−1∑
j=1

(g
√
η1)

n−j−1eiΦ j+1

×

[
Fj + g

√
1 − η1eiφ1,u , ja1,u, j

] (8)

whereΦj =
∑n−1

k=j ϕ1,k . The first two moments of the photon
number operator become:

⟨n⟩1,n =

n−1∑
j ,k=1

(|g |
√
η1)

2(n−1)−(j+k)⟨F ′†
n j
F ′
nk
⟩ (9)

⟨n2⟩1,n =
(|g |2η1)

n−1(|g |2 − 1) − |g |2(1 − η1)

|g |2η1 − 1
⟨n⟩1,n

+

n−1∑
j ,k ,l,m=1

(|g |
√
η1)

4(n−1)−(j+k+l+m)

× ⟨F ′†
n j
F ′
nk
F ′†
nl
F ′
nm

⟩, (10)

where F ′
n j

≡ ei[Φ j+1−jArg(g)]Fj . One can show that the Fano
factor of the fundamental after the nth cavity round-trip, F1,n,
satisfies

F1,n =
{(|g |2η1)

n−1 − 1}(|g |2 − 1)
|g |2η1 − 1

+
⟨(δAn)

2⟩

⟨n1⟩n
+ 1 ≥ 1,

(11)

provided |g |2 ≥ 1. Therefore, the photon statistics is not
sub-Poissonian for any initial state of the electrons. For com-
pleteness, we also include the expression for the Hermitian
operator An:

An =

n−1∑
j ,k=1

(|g |
√
η1)

2(n−1)−(j+k)F ′†
n j
F ′
nk
. (12)

Statistics for the Minimum Noise Electron State
The Fano factor can be explicitly computed if the initial

electrons are in the minimum noise state |Ψ⟩, defined as that
which is annihilated by the Hermitian conjugate of electron
beam operator:

F †
n |Ψ⟩ = 0. (13)

Using Eqs. (9), (11), and (12), we compute the Fano factor
to be

F1,n = 1 + ⟨n1⟩n, (14)

which is the same as that of chaotic light.
In the classical regime when q ≪ 1, as applies to the Chen-

Madey experiment, the phase operator of the jth electron
prior to the FEL interaction can be decomposed as

Θj0 = θ
c
j + Θ̃j, (15)

where θcj is a c-number denoting the initial classical position
while Θ̃j is the quantum correction that will be treated as a
small quantity.

The minimum noise state’s wave function of the jth elec-
tron in θ̃ space is a Gaussian function centered about its
classical position θcj with RMS width equal to √

q [5]. Al-
though the corresponding wave function’s width in the po-
sition space is much less than the radiation wavelength, as
θcj is randomly distributed, the electrons’ radiation can still
be regarded as coherent wave trains emitted by randomly
distributed electrons. This may explain why Eqn. (14) is in
accordance with Eqn. (3).

Comparison to Existing Literature
Banacloche [10] showed that the radiation is chaotic dur-

ing the linear gain regime of the high-gain FEL starting
from the noise, if the electrons are initially in momentum
eigenstates prior to the FEL interaction. In his analysis, he
attributed the random phase distribution of the initial elec-
trons to the infinite width of the wave function in the position
space, and found the same Fano factor as that for sponta-
neous emission, Eqn. (3). Interestingly, this result is the
same as what was just derived for electrons initially being
described by the minimum noise state.

Gjaja and Bhattacharjee [11] studied whether fluctuation
of the field variable in phase with the output field can be
reduced below the symmetrical vacuum fluctuation’s quan-
tum limit, in the linear gain regime of a FEL starting from
the noise. A field with such reduced fluctuation is named
amplitude-squeezed radiation. They found that in a high-
gain FEL, regardless of the initial state of the electrons,
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amplitude-squeezed radiation cannot be emitted. For a low-
gain FEL, if the electrons are not entangled initially, and
the initial wave functions of all electrons have the same
width in position and also in momentum, they found that
the amplitude-squeezed radiation cannot be emitted either.
However, they discovered that some initially entangled state
of the electrons can result in the amplitude-squeezed radi-
ation, which is interestingly not accompanied by the sub-
Poissonian photon statistics according to Eqn. (11).

THE HARMONIC MODE’S PHOTON
STATISTICS

Our quantum theory for the generation of non-linear
higher harmonic modes is based upon the simplest quan-
tum extention of the classical theory. For a harmonic mode
h that is dominantly-driven by the fundamental mode we
have

ah,n+1 = ah,n + khah1,n. (16)

We promote the classical fields to quantum operators to
obtain the corresponding iterative relation. Including the
cavity loss with the beam splitter model we find that

ah,n+1 =
√
ηheiφh ,nah,n + khah1,n

+
√

1 − ηheiφh ,u ,nah,u,n.
(17)

In terms of the initial values ah,n therefore becomes

ah,n =
√
ηh

n−1eiΦh ,1ah,1 +

n−1∑
j=1

√
ηh

n−j−1eiΦh , j+1

×

(
khah1, j +

√
1 − ηheiφh ,u , jah,u, j

)
,

(18)

where, as before, Φh, j =
∑n−1

k=j ϕh,k . Consequently, the first
two moments of the photon statistics become:

⟨nh⟩n = |kh |2
n−1∑
j ,k=1

√
ηh

2(n−1)−(j+k)
⟨a

′†h

1,n j
a
′h
1,nk ⟩, (19)

⟨n2
h⟩n = ⟨nh⟩n +

n−1∑
j ,k ,l,m=1

√
ηh

4(n−1)−(j+k+l+m)

× |kh |4
〈
a
′†h

1,n j
a
′h
1,nka

′†h

1,nla
′h
1,nm

〉
,

(20)

where a′1,n j
≡ a1, jeiΦh , j+1/h . In a similar way to what we did

before, the Fano factor of the harmonic mode after the nth

cavity round-trip, Fh,n, satisfies

Fh,n =
⟨(δCh,n)

2⟩

⟨nh⟩n
+ 1 ≥ 1, (21)

and the photon statistics is not sub-Poissonian for any initial
state of the electrons. The Hermitian operator Ch,n is:

Ch,n = |kh |2
n−1∑
j ,k=1

√
ηh

2(n−1)−(j+k)
a
′†h

1,n j
a
′h
1,nk . (22)

CONCLUSION
We have theoretically investigated the FEL photon statis-

tics using the standard theory. It does not seem probable
that the photon statistics in the linear gain regime of the FEL
starting from the noise is sub-Poissonian, regardless of the
harmonic number or the initial state of the electrons. There-
fore if a sub-Poissonian FEL light is experimentally observed
contradicting our finding, a theory beyond the standard one
may be necessary to explain the observation.
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