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Abstract
The effect of space charge on bunches stored for long

term in a nonlinear lattice can be severe for beam survival.
This may be the case in projects as SIS100 at GSI or LIU at
CERN. In 2012, for the first time, the effect of space charge
on a normal third order coupled resonance was investigated
at the CERN-PS. The experimental results have highlighted
an unprecedented asymmetric beam response: in the vertical
plane the beam exhibits a thick halo, while the horizontal
profile has only core growth. The quest for explaining these
results requires a journey through the 4 dimensional dynam-
ics of the coupled resonance investigating the fixed-lines, and
requires a detailed code-experiment benchmarking also in-
cluding beam profile benchmarking. This proceeding gives
a short summary of the experimental results of the 2012 PS
measurements, and address an interpretation based on the
dynamics the fixed-lines.

INTRODUCTION
Space charge induced emittance growth and beam loss

can be divided into two big classes. The beam loss deriv-
ing from the incoherent effects of space charge on lattice
nonlinearities (this proceeding), and the beam loss that may
arise from the growth of the coherent modes self-consistently
excited by the space charge [1].

The incoherent effects of space charge in coasting beams
create an emittance growth when the space charge detun-
ing overlaps a machine resonance. However, the incoherent
space charge tune-shift also stabilizes the emittance growth
by bringing particles out of the resonance as they grow in
transverse amplitude. The space charge induced beam loss
in a nonlinear machine becomes dramatic for bunched beams
when the synchrotron motion and space charge induce a pe-
riodic crossing of a machine resonance. A single resonance
crossing in a conventional RF bucket with synchrotron tune
of Qs ∼ 10−2 produces a small emittance growth because
of the relatively fast resonance crossing, but the cumulative
effect arising from repeated resonance crossing, more than
300-400 crossing, makes large impact creating a beam dif-
fusion to large transverse amplitudes, hence may lead to a
steady beam loss over all the storage time.
For one dimensional resonances the mechanism leading

to emittance growth and beam loss is explained in terms of
instantaneous stable islands in the two-dimensional phase
space and their crossing the particle orbits because of the
combined effect of space charge and synchrotron motion
Ref. [2]. This mechanism requires a long term storage, which
typically corresponds to a number of turns equivalent to
100 or more synchrotron oscillations. Experimental and

numerical studies on beam survival and emittance growth in
this regime have investigated the one dimensional resonance
4Qx = 25 in Ref. [3], and 3Qx = 13 in Ref. [4]. The
relevance of these studies is significant for SIS100 [5], and
for LIU [6] at CERN, as well as for all accelerators operating
with high intensity beams in regimes of long term storage.

RESULTS AND DISCUSSION
Coupled nonlinear resonances, of which the simpler class

is the Qx + 2Qy = N , leads to significant difficulties in pres-
ence of space charge, and experimental studies are manda-
tory to unravel the complex dynamics. The effect of space
charge on these type of resonances was studied in the CERN-
PS in 2012 for the resonance Qx + 2Qy = 19. In this pro-
ceeding we present a short summary of the full experiment
analysis. A more comprehensive presentation of the experi-
mental results and discussion is part of a future publication.

In the experiment, in a resonance-free region of the tune
diagram the third order resonanceQx+2Qy = 19was excited
with sextupoles with strength of K3 ' 0.015 m−2. The
experimental campaign used a beam with 55 × 1010 proton
per bunch, which produced an incoherent space charge tune-
shift of ∆Qx ' −0.05,∆Qy ' −0.07. The beam was stored
for ∼ 0.5× 106 turns, i.e. 1.1 seconds at an energy of 2 GeV,
and beam profile measurements where taken at the beginning
and at the end of the storage time. For several machine
tunes, initial and final beam profiles where compared with
the finding of an unexpected beam response to the distance
from the resonance. When the space charge tune-spread
overlaps the third order resonance and the machine tune is
close to the resonance without beam loss, the beam profiles
evolves differently in the transverse planes: in horizontal
plane the beam exhibits core growth, whereas in the other
plane a large halo is formed. This is shown in Fig. 1a,b for
the tunes Qx0 = 6.104,Qy0 = 6.476. The asymmetry of the
beam profile is quite evident and shows that a new and more
complex dynamics is driving the beam halo formation. In the
picture are also shown the profiles from computer simulation
as obtained from MADX, and MICROMAP (see Ref. [7] for
a general code benchmarking discussion). Figure 1c shows
the overall beam response in the experiment. The profiles in
Fig. 1a,b correspond to the largest emittance growth.
The explanation of the halo-core finding can be ap-

proached starting with a detuning analysis. The theory of
the resonances (see Ref. [8, 9]) shows that the more conve-
nient quantity to measure the distance from the third order
resonance is

∆r0 = Qx0 + 2Qy0 − 19.
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(a) (b)

(c)

Figure 1: Part a, and b: horizontal and vertical beam profiles
after 1.1 second storage of the beam in the CERN-PS. The
asymmetry of the beam response is evident. In part c is
shown the full beam response to all working points investi-
gated.

When ∆r0 = 0 the machine tunes sit on the resonance. This
definition valid for the machine tunes can be extended to any
arbitrary particle, hence it becomes ∆r = Qx + 2Qy − 19,
where now the tunes Qx,Qy are the effective tunes ex-
perienced by a test particle, which is affected by space
charge, chromaticity, and any other effects. If we call
∆Qsc,x (X,Y ),∆Qsc,y (X,Y ) the amplitude dependent detun-
ing created by space charge for a particle with amplitudes
X,Y , the distance from the resonance reads

∆r = ∆r0 + ∆Qsc,x (X,Y ) + 2∆Qsc,y (X,Y ). (1)

Therefore one can use this relation for a first order search of
the amplitudes of the resonant particles.
Given the machine tunes Qx0,Qy0 we find ∆r0, and the

resonant transverse amplitudes are found as the X,Y which
satisfy the equation ∆r = 0.

The quantity ∆r becomes therefore dependent from X,Y
and can be regarded as a resonance detuning that incorpo-
rates the coupled character of the resonance Qx + 2Qy = 19.
In Fig. 2 the two curves show the dependence of ∆r for two

types of particle amplitudes. The red curve is obtained for
amplitudes type (X, 0), while the black curve is obtained
for amplitudes (0,Y ). The horizontal line of height ∆r = 0
intercepts the two curves at the resonant amplitudes, which
in our case are X ∼ 5σx , and Y ∼ 4σy .

Figure 2: Resonance detuning ∆r as function of the particle
amplitude.

From the phenomena of periodic resonance crossing we
expect that particle diffusion is not exceeding the outer po-
sition of the “resonant particles”, which is X ∼ 5σx , and
Y ∼ 4σy . However, a comparison with a multi-particle sim-
ulation in absence of chromaticity, shows that no halo with
amplitude X ∼ 5σx is found.
By adding the chromaticity to Eq. (1) we can investigate

the role of the chromaticity on the resonant amplitudes, for
example for particles with maximum δp/p, and construct an
equivalent graphic of Fig. 2. Adopting the same procedure as
previously described, we can search for the resonant particles
at largest amplitudes (condition ∆r = 0). We find that the
halo predicted by this analysis is X > 9σx , and Y ∼ 9σy .
Once more, this result contradicts the experimental findings,
in which the halo is found at Y ' 5.5σy .

INTERPRETATION WITH
THE FIXED LINES

The explanation of the beam profile observed and re-
trieved from simulations in Fig. 1 goes beyond the detuning
analysis, and have to be searched into the effects created by
the 4D coupled dynamics. The analogous of the fixed-points
is now the fix-lines [9–11]. The analytic form of these lines
(or resonant tori) is parameterized as

x =
√
βxax cos(−2t − α + πM), y =

√
βyay cos(t). (2)

The coordinates x ′, y′ are readily derived from Eq. (2). The
fixed-line emittances ax, ay are determined by the distance
to the resonance ∆r0. The variable t parameterizes the fixed-
line. In absence of space charge and of nonlinear detuning,
the fixed-line has the largest extension in the y direction, and
in particular the ratio of the fixed-line invariants takes the
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value of ay/ax = 8 when ay is maximum (see Ref. [10]).
The coefficient M is 0, or 1 according to the condition of
existence of the fixed line. In Fig. 3 we shows an example of

(a) (b)

(c) α = π/2, M = 1 (d) α = π/2, M = 1

(e) α = 0, M = 1 (f) α = 0, M = 1

Figure 3: Fixed-line projections in normalized coordinates.
The parameters in Eq. (2) are indicated in each picture. Note
that the topology of the x − y projection of a fixed-line
depends substantially on the angle α.

the shape of these lines plotted in normalized coordinates.
It is visible that the x − y projection of the resonant particle
on the fixed-line have a special form which can be easily
identified. The dependence of α makes the shape “C” and
the shape “8” exchangeable. Practically the parameter α is
the phase of the driving term of the third order resonance,
and in our case it depends on the location of the sextupoles
used to excite the resonance with respect to the observation
point along the machine (the flying wire position). Also on
the interplay of space charge with the resonant dynamics is
relevant, but the theory of fixed-lines with space charge is
not available, hence only a numerical investigation can be
presented.
The investigation of the role of the fixed-lines in the

bunched beam is first carried out by freezing artificially

the longitudinal motion in the simulation modeling the ex-
perimental beam profiles of Fig. 1, and by constructing a
tune footprint of a set of test particles. The resonant particles
are easily identified as the FFT method used to retrieve the
single particle nonlinear tunes Qx,Qy , locks the single parti-
cle tunes of resonant particles to the line Qx + 2Qy − 19 = 0.
We then plot the x − y projection of the resonant orbits and
compare it with the x − y projections in Fig. 3 searching for
indications of a fixed-lines dynamics. In part a of Fig. 4 we

(a)

(b)

Figure 4: Part a). x− y projection of the two largest resonant
orbits at z = 0σz ; Part b). The two largest resonant orbits
now at z = 1.5σz .

show two resonant orbits for test particles located at z = 0σz .
The topology of the orbit projection leaves no doubt that we
see two particles locked to two distinct fixed lines having
the “8” shape in x − y projection. The asymmetric form
of the orbits is remarkable although the resonant particle
is not sitting exactly on the fixed-line. This result simply
shows that the presence of the beam space charge detuning
does not destroy the dynamics that creates the fixed-lines.
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By repeating the analysis for particles at z = 1.5σz we can
visualize the resonant orbits at a location of the bunch with
smaller transverse space charge. These resonant orbits are
shown in part b of Fig. 4. Even in this case we clearly dis-
tinguish in the resonant orbits the pattern of the fixed-lines.
The aspect ratio is now different, and the extension of the
orbits is smaller.
This pattern of the extension of the fixed-lines along the

bunch is consistent with the studies on one dimensional
resonances. In Ref. [2] it is shown that the frozen transverse
islands have the maximum size and their fixed-points have
maximum amplitudes at longitudinal positions z = 0. For
other longitudinal position within the bunch the fixed-points
are found at smaller amplitudes. Eventually at locations
enough far away from the bunch center, the fixed-points
merge to the transverse origin and disappear. This pattern is
at the base of the periodic resonance crossing mechanism.
Figure 4a,b convey the same information as they show that
instantaneous fixed-lines have amplitude function of the
longitudinal particle coordinate z in the bunch reference
frame. This pattern which exhibits the largest fixed-lines
at z = 0σz , with amplitude decreasing for increasing the
longitudinal amplitude, will create phenomena of periodic
crossing of the fixed-lines. This can be seen in Fig. 5 where
the evolution of the single particle emittance is shown during
one synchrotron oscillation. The scattering of the invariant
is clearly visible with 4 kicks per synchrotron oscillation.

Figure 5: Emittance of one test particle during storage. The
picture reveals the 4 kicks exerted by the fixed-lines during
one synchrotron oscillation.

CONCLUSION AND OUTLOOK
In this proceeding we shortly summarize the main find-

ings of the PS experiment performed in 2012. We find a
simulation evidence that the dynamics creating the halo is
determined by the fixed-lines. We find that the fixed-lines

change amplitude according to the strength of the instanta-
neous space charge tune-spread, which depends on the par-
ticle longitudinal position within the bunch. This induces
a phenomena of periodic crossing of the fixed-lines with
the particle orbit. Scattering phenomena are found in the
simulation as a clear trace of this fundamental mechanism.
The asymmetry of the measured beam response is a result
of the asymmetric shape of the instantaneous fixed-lines.

It remains open and is not discussed in this proceeding the
influence of the many fixed-lines on the particle motion, and
the explanation of why the halo in the experiment extends
only up to 5.5σy although simulations clearly show the exis-
tence of many fixed-lines which extends on a larger surface,
reaching up to 9σy when the effect of the chromaticity is
included. If it is possible to identify which is the fixed-line
of relevance for the scattering mechanism, it will be possible
to predict the extension of the halo without actually running
the very demanding multi-particle simulations. The under-
standing of this mechanism is also of relevance on the issue
of the resonance compensation, which attempt was already
presented in HB2014 in Ref. [12].

The discussion of all these aspects as well as of the open
question here presented is left to a future publication.
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