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Abstract

This study reports on an alternative method to generate
transverse Landau damping to suppress coherent instabilities
in circular accelerators. The incoherent betatron tune spread
can be produced through detuning with longitudinal rather
than transverse action. This approach is motivated by the
high-brightness, low transverse emittance beams in future
colliders where detuning with transverse amplitude will be
less effective. Detuning with longitudinal action can be in-
troduced with a radio frequency (rf) quadrupole, or similarly,
using second-order chromaticity. The latter was enhanced in
the Large Hadron Collider (LHC) at CERN and experimen-
tal results on single-bunch stabilization are briefly recapped.
The observations are interpreted analytically by extending
the Vlasov formalism to include nonlinear chromaticity. Fi-
nally, the newly developed theory is benchmarked against
circulant matrix and particle tracking models.

INTRODUCTION

Due to the strongly reduced transverse emittances of the
beams in the Future Circular hadron Collider (FCC-hh), gen-
erating a betatron tune spread with magnetic octupoles for
Landau damping of transverse dipole modes is ineffective, in
particular at high energy [1, 2]. Betatron detuning with lon-
gitudinal amplitude introduced by means of an rf quadrupole
is hence under study as a potential alternative [3]. Numeri-
cal studies performed with the PyHEADTAIL tracking code
demonstrate that such an rf device can indeed provide beam
stabilization [4, 5].

It was shown in Ref. [6] that second-order chromatic-
ity (Q′′) mimics the effect of an rf quadrupole at first or-
der. Measurements were performed in the LHC where Q′′

was enhanced and single bunches were stabilized at 6.5 TeV
through detuning with longitudinal amplitude [7, 8]. Py-

HEADTAIL showed a very good agreement with the data,
confirming the correct modelling of Landau damping from
an rf quadrupole or nonlinear chromaticity in the code [6].
Both simulations and experiments indicate that Q′′ intro-
duces two beam dynamics effects: (i) it changes the effective
impedance and hence the transverse dipole modes and their
associated coherent frequencies, and (ii) it generates a beta-
tron tune spread depending on the longitudinal amplitude
and therefore Landau damping.

The objective of this study is to present the progress made
on the development of the Vlasov theory for nonlinear chro-
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maticity and to confirm analytically the two effects that were
observed in the LHC. First, the main results and conclusions
from the experiments are recapped before briefly explaining
how the Vlasov formalism was extended to include nonlinear
chromaticity. Finally, results from numerical studies with
PyHEADTAIL and the circulant matrix solver BimBim are
discussed to demonstrate the validity of the developed the-
ory [9, 10]. Only the main results for airbag and Gaussian
beams are presented here, with specific approximations on
the impedance model. A complete study including detailed
derivations and providing considerably more information
on the benchmarks is currently in preparation and will be
submitted to a peer-reviewed journal in the near future.

LHC EXPERIMENTS

LHC Single-Bunch Stability

At 6.5 TeV, with design bunch parameters, first-order
chromaticity Q′x,y between 11 and 14 units, and the trans-
verse feedback system active with a damping time of ap-
proximately 100 turns, the main transverse single-bunch in-
stability in the LHC is a horizontal head-tail mode with
azimuthal and radial numbers l = 0 and m = 2 respec-
tively [11, 12]. During routine operation this instability
is mitigated by means of the Landau octupoles [13]. The
minimum current required for stabilization was measured
to be Imeas

oct = 96+29
−10 A. Using a detailed LHC impedance

model [14], PyHEADTAIL predicts the correct instability
threshold (Isim

oct = 107.5± 2.5 A) and the right azimuthal and
radial numbers of the head-tail mode, confirming the high
reliability of the numerical model.

Second-Order Chromaticity Study

The LHC main sextupoles are grouped into focusing and
defocusing families and each of them is split further into
two subfamilies interleaved by a phase advance of about
π. The four groups can be powered individually for each
of the eight machine sectors which makes it possible to
control the second-order chromaticity independently in the
two transverse planes and without affecting Q′x,y . For each
of the two beams, two orthogonal (nonlinear) knobs QPPX
and QPPY were defined to enhance respectively Q′′x and Q′′y .

The experiment was performed with two bunches in each
of the two beams at 6.5 TeV. The Landau octupoles were
initially powered with Ioct = 320 A to ensure beam stability.
The settings for QPPX and QPPY were determined using
MAD-X to introduce Q′′x,y ≈ −4 × 104 in both beams once
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l = 0 l = -1

Figure 1: Comparison of the two horizontal head-tail modes
observed in the LHC (top) and in PyHEADTAIL simulations
(bottom) without (left) and with (right) Q′′x .

the current in the Landau octupoles would be reduced to
zero [15]. The reason for using negative Q′′ is that it pro-
vides a higher stabilizing efficiency for the head-tail mode
observed in the LHC which is characterized by a negative
real coherent tune shift [6, 16]. This is due to the strong
asymmetry of the tune spreads and hence of the stability
boundary diagrams introduced by Q′′ (see theory below).
As soon as the targeted sextupole settings were reached, the
current in the Landau octupoles was decreased in steps of
40 A. At Ioct = 40 A all four bunches were still stable. At
this stage Q′′x,y measurements were performed that showed a
good agreement with MAD-X predictions hence demonstrat-
ing that Q′′ is well-controlled in the machine [6]. Once the
Landau octupole current was reduced to 0 A, a horizontal in-
stability occurred in one of the four bunches while the other
three remained stable. The reason why only one bunch went
unstable was its significantly higher intensity compared to
the second bunch in the same beam [8]. The observed insta-
bility was now no longer a head-tail mode (l,m) = (0,2), but
instead had mode numbers (l,m) = (−1,3). Figure 1 (top)
displays the measured head-tail patterns without (left) and
with (right) Q′′, acquired by the Head-Tail Monitor [17]. The
fact that the bunches were stable at significantly reduced, or
even zero octupole current indicated a strong Landau damp-
ing effect from Q′′, later confirmed by tracking simulations.

PyHEADTAIL was used to interpret the experimental ob-
servations made. 4 × 105 macroparticles were tracked over
1.8 × 106 turns, again using the detailed LHC impedance
model. Figure 2 summarizes the main results. The color
code shows the relative emittance growth over the simulation
period in %, where ‘blue’ is stable and ‘white’ unstable. The
dots represent the azimuthal mode number of the instability
predicted for each setting of the Q′′ knobs. Labels (a) and
(b) correspond to the two experimental working points, re-
spectively with and without Q′′. The plot shows that large
regions of stability are created in the QPPX vs. QPPY plane
thanks to Landau damping from Q′′. The two main stable
areas are, however, separated by an unstable band indicating
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Figure 2: PyHEADTAIL study showing the predicted hori-
zontal head-tail instabilities and the emittance growth in the
QPPX vs. QPPY plane. Labels (a) and (b) denote the two
experimental working points.

a head-tail mode l = −1 (red dots). This is a consequence
of Q′′ changing the effective impedance and hence the head-
tail modes as discussed analytically in the following section.
The first unstable band observed at low values of Q′′ is the
mode l = 0 (green dots), consistent with experimental obser-
vations made in absence of Q′′. The stable region between
the two unstable bands arises from sufficient Landau damp-
ing of both modes. The further increase of Q′′, however,
leads to a change of the effective impedance, causing a loss
of Landau damping for the l = −1 mode. For even larger
amounts of Q′′, all the instabilities are suppressed. Addition-
ally, working point (b) lies close to the second unstable band.
This is consistent with experimental data which clearly show
that the observed horizontal instability is indeed of mode −1.
Overall, the experimental results, and in particular the Head-
Tail Monitor signals, are in excellent agreement with the
simulations, displayed in Fig. 1 (bottom).

In the following section, the existing Vlasov theory will
be extended to include the effects of nonlinear chromatic-
ity, making it possible to confirm the interpretation of the
experimental observations analytically.

VLASOV THEORY

Vlasov’s equation in transverse (q, θ) and longitudinal
(r, φ) polar coordinates reads [18]

[

∂s +
1

c
ωβ (δ) ∂θ +

ωs

c
∂φ +

Fy

E
∂py

]

Ψ = 0, (1)

where Ψ is the particle distribution in 4D phase space (in-
cluding the longitudinal and one transverse plane), s the
longitudinal position of the bunch along the accelerator, c

the speed of light, E the total energy of the beam particles,
Fy the transverse force representing here the effect of trans-
verse dipolar wakefields, py (q, θ) the transverse momentum,
δ the relative longitudinal momentum error, and ωs the syn-
chrotron frequency. Nonlinear chromaticity terms up to
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order m are included in the equation through a dependency
of the betatron frequency on δ

ωβ (δ) = ωβ,0 + ∆ωβ (δ) = ωβ,0

m
∑

k=0

ξ (k )

k!
δk , (2)

with ωβ,0 the unperturbed betatron frequency, and

ξ (n)
=

1

ωβ,0

∂nωβ

∂δn

����δ=0
(3)

the nonlinear chromaticity of order n.
To simplify the Vlasov equation and to find the solutionsΨ

of the collective transverse dipole modes, one proceeds in a
similar way as explained in Ref. [18], Eqs. (6.166) to (6.179),
while allowing for an arbitrary dependence of the betatron
frequency on the longitudinal momentum deviation. First,
Ψ is described as a sum of a stationary solution and a per-
turbation term Ψ = Ψ0 + Ψ1, where Ψ0 = g0(r) f0(q) and
Ψ1 = −Dg1(r, φ) f ′0(q) eiθ e−iΩs/c . g0 and g1 are the sta-
tionary and perturbed longitudinal distributions respectively,
and f0 is the transverse stationary distribution. D is the dipo-
lar moment of the perturbed distribution and Ω the complex
coherent frequency associated with the mode. Using this
approach, the Vlasov equation can be reduced such that it in-
volves only longitudinal coordinates. The wakefield term is
expressed in frequency domain using the transverse dipolar
impedance Z⊥1 (ω) and one can obtain an equation similar to
(6.174) in Ref. [18]. From this point onwards, one deviates
from the path described in Ref. [18] and instead rewrites the
Vlasov equation in terms of the functions

G1(r, φ) � g1(r, φ) e
i

ωs

∫ φ

0
∆ωβ (δ (r,u)) du

. (4)

They can be further decomposed into the azimuthal eigen-
modes Gl

1(r, φ) (with eigenvalues Ω(l )) of the free (Z⊥1 ≡ 0)
Vlasov equation

Gl
1(r, φ) = Rl (r) e

i

(

l+
〈∆ωβ 〉φ

ωs

)

φ
,

Ω
(l )
= ωβ,0 + l ωs + 〈∆ωβ〉φ ,

(5)

where l ∈ Z is the azimuthal mode number, and 〈∆ωβ〉φ (r)

denotes the betatron frequency change ∆ωβ (δ(r, φ)) aver-
aged over the longitudinal phase φ in the interval [0,2π).
This quantity is, in general, dependent on the longitudinal
amplitude r of the particles and thus describes the beta-
tron frequency spread introduced through detuning with
longitudinal amplitude. This term will eventually lead to
Landau damping as demonstrated below when comput-
ing the dispersion relation. One can already see at this
stage that 〈∆ωβ〉φ (r) ≡ 0 for odd orders of chromaticity
ξ (2n+1) , n ∈ N0, i.e. the average frequency spread vanishes.
This result is independent of the longitudinal particle distri-
bution. Odd orders of chromaticity do not introduce Landau
damping. On the other hand, even orders of chromaticity
ξ (2n) , n ∈ N introduce a betatron frequency spread with lon-
gitudinal amplitude that does not average out over time. In

any case, though, both odd and even orders of chromaticity
introduce a change of the effective impedance and modify
the coherent frequencies of the modes which will also be
demonstrated and discussed in the following section.

Having rewritten the Vlasov equation in terms of the az-
imuthal eigenmodes Gl

1(r, φ), one can multiply the result by
e−ilφ and perform the integration over φ from 0 to 2π. Fi-
nally, one can integrate over r from 0 to∞ to obtain Vlasov’s
equation in its ‘final’ form

σl p = −i
q2ωs ω

2
0

4πωβ,0Eη

∞
∑

l′, p′=−∞

σl′p′ Z⊥1
(

ω′
)

×

∫ ∞

0

rg0(r) H
p′

l
(r) H

p

l
(r)

Ω(l ) − ωβ,0 − l ωs − 〈∆ωβ〉φ (r)
dr,

(6)

where q is the electric charge of the particles, ω0 the angular
revolution frequency, and η the slip factor. Furthermore,

σl p �

∫ ∞

0
r Rl (r) H

p

l
(r) dr,

H
p

l
(r) �

1

2π

∫ 2π

0
eilφ e−

iω′

c
r cosφ e

− i
ωs

B(r,φ)
dφ,

B(r, φ) �

∫ φ

0

[
∆ωβ (δ(r,u)) − 〈∆ωβ〉φ (r)

]
du,

(7)

with l, p ∈ Z, and ω′ ≈ p′ω0 + ωβ,0 + l ωs . In the weak-
wake approximation, the summation over l ′ can be neglected
and one can instead consider Eq. (6) as a set of independent
equations in l. H

p

l
(r) can be perceived as a generalized

Bessel function. It can be shown that in the event of a purely
linear chromaticity, H

p

l
(r) reduces to the Bessel function of

the first kind and Eq. (6) becomes identical to Eq. (6.179)
in Ref. [18]. The phase terms e−iB(r,φ)/ωs describe the al-
teration of the interaction of the beam with the impedance
caused by arbitrary orders of chromaticity. The result is
that the overlap sum over index p′ in Eq. (6) between the

H
p′

l
(r) functions and the impedance Z⊥1 (ω′) changes. This

causes a change of the coherent frequencies Ω(l ) , both for
the real and imaginary components, of all the modes, an
effect that is not related to Landau damping. Instead, Lan-
dau damping can be seen from the dispersion integral in
the bottom line of Eq. (6). The incoherent detuning term
〈∆ωβ〉φ (r) in the denominator leads to an increase of the
stable area in the complex frequency space as demonstrated
in the following section. Equation (6) hence decouples the
two beam dynamics effects introduced by nonlinear chro-
maticity and observed consistently in LHC experiments and
in PyHEADTAIL simulations.

SOLUTIONS AND BENCHMARKS

This section discusses specific solutions to the previously
derived Vlasov equation and summarizes the benchmarks
performed to validate the formalism by means of the circu-
lant matrix solver BimBim and the PyHEADTAIL tracking
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code. While the theory and the circulant matrix solver di-
rectly output the coherent frequencies for each azimuthal
mode, the tracking results have to undergo additional post-
processing. The real and imaginary parts of the coherent
frequencies are obtained respectively from a SUSSIX fre-
quency analysis and from exponential fits to the bunch cen-
troid signals [19].

Equation (6) is first evaluated for a longitudinal airbag
model where all the particles have the same longitudinal
amplitude and hence there is no net frequency spread from
any order of chromaticity. In that case, there is no Landau
damping (the dispersion integral disappears from Eq. (6))
and one can thus study separately the change of the effective
impedance. Thereafter, a longitudinal Gaussian bunch is an-
alyzed where the two beam dynamics effects introduced by
nonlinear chromaticity are both present. Here, even orders
of chromaticity introduce a frequency spread and Landau
damping. Stability boundary diagrams are computed and de-
tailed comparisons with PyHEADTAIL tracking simulations
are made.

Airbag Model

To benchmark the developed theory against numerical
models, a scan in second-order chromaticity is performed at
fixed first-order chromaticity ξ (1)

= 0.25 for a longitudinal
airbag distribution. The machine parameters used for the test
are loosely based on the CERN Super Proton Synchrotron
(SPS) at injection energy (γ = 27.7, ωs/ω0 = Qs = 0.017,
βz = 115 m), where γ, Qs , and βz are the relativistic
Lorentz factor, the (linear) synchrotron tune, and the lon-
gitudinal Courant-Snyder beta function respectively. The
bunch intensity is at 109 p and the particles are set to have a
longitudinal action of Jz = 3×10−4 m. A simple broad-band
resonator impedance is used (Rs = 107

Ω/m, fr = 0.8 GHz,
Q = 1), with Rs , fr , Q respectively the resonator shunt
impedance, its frequency, and its Q-value. Equation (6) is
evaluated numerically and the results are plotted in Fig. 3
(solid lines) for azimuthal modes up to order |l | = 5. The
theoretical predictions are in excellent agreement with the
tracking (green crosses) and circulant matrix (red dots) mod-
els confirming the validity of the developed formalism. Also,
the results demonstrate that second-order chromaticity mod-
ifies the effective impedance which leads to a change of the
most unstable mode as a function of ξ (2) . This effect was
experimentally observed in the LHC. The real coherent fre-
quency shifts are dominated by the constant (i.e. independent
of r) and real-valued term 〈∆ωβ〉φ which is identical for all
the azimuthal modes of an airbag beam.

Gaussian Beam

To study the effect of Landau damping from nonlinear
chromaticity, a Gaussian beam is used for the comparison
between the theory and the PyHEADTAIL model. For Gaus-
sian beams, there is a longitudinal amplitude spread among
the particles. In combination with even orders of chromatic-
ity, this translates into a betatron frequency spread and an

Figure 3: Real (top) and imaginary (bottom) coherent fre-
quencies as a function of ξ (2) at fixed ξ (1)

= 0.25 for an
airbag model using BimBim (red dots), PyHEADTAIL (green
crosses), and analytical calculations (solid lines).

increase of the stability boundary diagram in the complex fre-
quency space. In general, however, the eigenvalue problem
in Eq. (6) is difficult to solve. To write down an analytical
solution where the dispersion relation and Landau damp-
ing become more apparent, constraints are imposed on the
shape of the impedance. A highly narrow-band resonator
impedance is considered, for instance, such that effectively
Z⊥1 (ω′) = Zp0 , 0 for p′ = p0, and Z⊥1 (ω′) = 0 every-
where else. For this type of impedance, Eq. (6) simplifies
greatly. To compute the stability boundary diagram, one
considers the coherent frequency shift ∆Ω(l )

lin in absence of
Landau damping (linear lattice), determined by ignoring the
frequency spread in Eq. (6). This yields

(

∆Ω
(l )

lin

)−1
=

1

N

∫ ∞

0

rg0(r)
���H

p0

l
(r)

���
2

Ω(l ) − ωβ (r) − l ωs

dr,

N =

∫ ∞

0
rg0(r)

���H
p0

l
(r)

���
2

dr,

(8)

where ωβ (r) = ωβ,0 + 〈∆ωβ〉φ (r). The dispersion relation
is evaluated by adding a small complex part iε to the denom-
inator of the integral (Landau bypass rule). By making addi-
tional assumptions on the beam spectrum and impedance,
one can also show that Eq. (8) is equivalent to the results
found by Scott Berg and Ruggiero in Ref. [16].

To benchmark Eq. (8) against PyHEADTAIL, the assump-
tion on the strongly-peaked impedance needs to be fulfilled.
This can be achieved by choosing a high quality factor res-
onator and tuning its frequency to match the spectral max-
imum of the azimuthal mode zero while remaining small
for all the other modes. At the end of the tuning proce-
dure, the values for the resonator were Rs = 5 × 1012

Ω/m,
fr = 0.7993 GHz, and Q = 5× 104. Due to the high quality
factor, multi-turn wakefield effects had to be enabled in Py-

HEADTAIL. A bunch length of σz = 0.21 m was used for
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Figure 4: Stability boundary diagrams for different values of
ξ (2) obtained by numerically solving the dispersion relation
in Eq. (8). The coherent frequency shift of the mode under
consideration is obtained from PyHEADTAIL (red cross).

the Gaussian distribution. All the other machine parameters
were kept the same as above.

To evaluate beam stability analytically, the dispersion
relation in Eq. (8) is solved numerically for different ξ (2) .
Solutions of the stability boundary diagrams are shown in
Fig. 4 (solid lines) for four specific values of ξ (2) . Due to
the negative real part of the coherent frequency shift of the
mode under consideration (red cross), negative values of
ξ (2) are used as they provide stability more efficiently given
the asymmetry of the frequency spread and of the stability
diagrams. The plots illustrate the growth of the area of
stability with increasing |ξ (2) |. For ξ (2) ≤ −10, the area is
large enough as to include the unstable mode from which
point onwards it is fully Landau damped. It has been verified
that by removing the frequency spread from the formula, the
modes cannot be stabilized at least up to |ξ (2) | = 1000.
Furthermore, theoretical calculations show that within a
few tens of units of |ξ (2) |, there is no strong dependence of
the coherent frequency on ξ (2) , i.e. the change of effective
impedance is insignificant here.

Figure 5 displays the dependence of the imaginary coher-
ent frequency shift (instability growth rate) on the second-
order chromaticity as obtained analytically (red diamonds)
and from PyHEADTAIL simulations (green crosses). The
analytical solutions were calculated using stability diagram
theory: different values for iε were plugged in the denomi-
nator of Eq. (8) to compute the ‘distortion’ of the complex
frequency space and therefore deduce the growth rates of the
instability as a function of ξ (2) . The PyHEADTAIL results
were determined using exponential fits to the bunch centroid
signals. The theory and the tracking model demonstrate an
excellent agreement, not only on the stability threshold, but
also on the evolution of the growth rate for intermediate ξ (2) .
It has also been verified that there is no other mode that
becomes unstable, at least up to |ξ (2) | = 1000.

CONCLUSIONS

The existing Vlasov theory on transverse dipole modes
has been extended to include the effects of nonlinear chro-

Figure 5: Stabilization of the head-tail mode zero as a func-
tion of ξ (2) < 0 for a Gaussian beam. PyHEADTAIL simu-
lations (green crosses) are shown together with predictions
obtained from stability diagram theory (red diamonds).

maticity up to arbitrary order. This new formalism made
it possible to confirm the hypothesis that nonlinear chro-
maticity has two effects on the beam dynamics of transverse
coherent modes, observed in experiments with second-order
chromaticity in the LHC: (i) it introduces Landau damp-
ing thanks to the incoherent betatron frequency spread with
longitudinal amplitude, e.g. providing stability for single
bunches in the LHC, and (ii) it alters the effective impedance,
observed as a change of the most unstable mode in the LHC.

The theory has been successfully benchmarked up to
second-order chromaticity for an airbag model and a Gaus-
sian beam using a tracking model and a circulant matrix
solver. All the benchmarks revealed an excellent agreement
with the theory. For the Gaussian beam it has been shown
that, given the assumption of a strongly-peaked impedance,
analytical predictions from stability diagram theory are in
perfect agreement with tracking simulations. This proves
that detuning with longitudinal amplitude indeed provides
Landau damping. The frequency spread can be introduced
for example with even orders of chromaticity, or, simi-
larly, with an rf quadrupole. This is in accordance with
experiments and simulations that were carried out on the rf
quadrupole and on second-order chromaticity in the LHC,
confirming the interpretation of these results.
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