
LONGITUDINAL DYNAMICS OF LOW ENERGY SUPERCONDUCTING 
LINAC* 

Zhihui Li†, The Key Labratory of Radiation Physics and Technology of Education Ministry, 
Institute of Nuclear Science and Technology, Sichuan University, 610065, Chengdu, China  

Abstract 
The superconducting linac is composed of short inde-

pendent cavities, and the cavity occupies only a small por-
tion (1/4 to 1/6) of the machine compared with the normal 
conducting one. When phase advance per period is greater 
than 60 degrees, the smooth approximation is no longer 
valid and the longitudinal motion has to be described by 
time dependent system. With the help of Poincare map, the 
single particle nonlinear time dependent longitudinal mo-
tion is investigated. The study shows that when phase ad-
vance per period is less than 60 degrees, the system can be 
well described by smooth approximation, that means there 
is a clear boundary (separatrix) between stable and unsta-
ble area; when phase advance is greater than 60 degrees, 
the system shows a quite different dynamic structures and 
the phase acceptance is decreased significantly compared 
with the smooth approximation theory predicated, espe-
cially when phase advance per period is greater than 90 de-
grees. The results show that even for low current machine, 
the zero current phase advance should be kept less than 90 
degrees to make sure there is no particle loss because of the 
shrink of the longitudinal acceptance.  

INTRODUCTION 
Keeping the zero current phase advance per period less 

than 90 degrees to avoid the envelope instability driven by 
space charge force has been widely accepted as one of the 
fundamental design principles of the high current linear ac-
celerators [1], but for low current machine, should we still 
keep the zero current phase advance per period less than 90 
degree? As the advance of the superconducting technology, 
more and more long pulse or continues wave ion accelera-
tors adopt the superconducting acceleration structures just 
behind the RFQ because of their excellent properties, such 
as low AC power consumption, large beam tubes, great po-
tential in terms of reliability and flexibility thanks to its in-
dependently-powered structures. The superconducting 
cavity can provide much higher acceleration field com-
pared with the normal conducting one and can get higher 
acceleration efficiency, but at the same time the beam also 
suffers much stronger transverse defocusing from the 
higher electromagnetic field in the superconducting cavi-
ties, so there must be enough transverse focusing elements 
to confine the beam within the aperture, especially at low 
energy part, where it usually needs one focusing elements 
per cavity. However, the existence of the static magnetic 
field will increase the surface resistance of the supercon-
ducting cavity and may cause it to quench, so the cavity 
needs to be well screened from any static magnetic field, 
which makes it impossible to integrate the transverse fo-
cusing lens with the cavity just as the normal conducting 

Alvarez DTL cavity does. As a consequence, the focusing 
period length will be much larger than the normal conduct-
ing one. The long period length, high acceleration gradient 
to fully utilize the potential of the superconducting cavities 
and large synchronous phase for large acceptance, all these 
makes the zero current phase advance per period greater 
than 90 degrees. In this paper, we proposed a model that 
can describe the longitudinal motion of low energy super-
conducting linac properly, and the longitudinal motion of 
low energy superconducting linac is explored. 

MODEL DESCRIPTION 

The longitudinal motion in linac is usually described by 
the following equations [2],  
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Figure 1: Phase portrait of smooth approximation longitu-
dinal motion, the blue line is the separatrix. 
 
The longitudinal motion equations are derived based on 
thin gap approximation and average in one period, they can 
also be directly derived from traveling wave approximation. 
When acceleration rate is small and the parameters A and 
B can be looked as constant, then the dynamics system de-
scribed by equations (1) and (2) is time independent and 
integrable. The first motion constant is the energy or Ham-
iltonian of the system 
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and they are a good approximation of the longitudinal mo-
tion of the normal conducting linac, such as DTL structures. 
The most significant characteristic property of the system 
is that the trajectory of the particle in phase space is con-
fined on the curve of (3), and the stable area is defined by 
the curve which pass the unstable fixed point, the boundary 
of the stable and unstable area is called separatrix. The sta-
ble and unstable area has a clear boundary and the phase 
portrait is shown in Fig. 1.  

For the low superconducting accelerators, the lattice is 
shown in Fig. 2, the cavity filling factor which is defined 
as 

η ൌ  (4)                                  ,ܮ/௖ܮ

where ܮ௖ is the effective length of the cavity and L is the 
period length. Because of the existence of the long drifts 
between cavities, the cavity filling factor for low energy 
superconducting linac is very small, usually between 0.2 to 
0.25 and the validation of the smooth approximation is 
questionable. We propose that the longitudinal motion in 
low energy superconducting linac can still be described by 
equation (1) and (2), while the parameter B is time depend-
ent defined as, 

B ൌ ቊ
௤ாబ்

௠௖మ
,							0 ൏ ݏ ൏ ܮߟ

ܮߟ											,0 ൏ ݏ ൏ 	ܮ
,                          (5) 

Then the system is time dependent nonlinear system. 

 

Figure 2: Longitudinal lattice structure. 

LINEAR DYNAMICS 
In order to investigate the time dependent nonlinear sys-

tem, we first linearize the equation (2) at the stable fixed 
point (߶௦, 0ሻ	 and the linear motion equation is 

xᇱᇱ ൅ ݇ଶݔ ൌ 0,                              (6-1) 
and  

݇ଶ ൌ ൜
െ݊݅ݏܤܣ߶௦,					0 ൏ ݏ ൏ ܮߟ
ܮߟ															,0 ൏ ݏ ൏ ܮ  .                (6-2) 

where ݔ ൌ ߶ െ ߶௦. The lattice is equivalent to a periodic 
focusing channel composed by two elements, a solenoid 
and a drift space. By transform matrix, we can get the linear 
property of the system. The period transform matrix of the 
lattice is,   

ܶ ൌ ௖ܶ ௗܶ 

where Tc and Td is the transform matrix of cavity and drift 
space, respectively and they are 

ௗܶ ൌ ቀ1 ሺ1 െ ܮሻߟ
0 1

ቁ,                              (7) 
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and  

ߠ ൌ  ௖                                         (9)ܮ݇√

is the focusing angle of the cavity. From the transform ma-
trix of the system we can deduce the relation between phase 
advance per period  and the main parameters of the focus-
ing lattice,  

ߪݏ݋ܿ ൌ ߠݏ݋ܿ െ
ଵ

ଶ

ଵିఎ

ఎ
 (10)                          ߠ݊݅ݏߠ

we see if the cavity filling factor is 1, that means the linac 
is composed by cavities just like DTL structure, then ߪ ൌ
 and is obviously true. If filling factor is less than 1, then ߠ
ߪ ൐   .ߠ

When σ ≪ 1	and	θ ≪ 1, we can get 

ߪ ൌ  (11)                                  ߟඥ/ߠ

which is equivalent to the lattice that is composed by cavity 
with filling factor 1 and the acceleration gradient ܧߟ଴, that 
is the smooth approximation. In conclusion, when smooth 
approximation is valid, the phase advance per period is pro-
portional to focusing angle of the cavity, and the propor-
tional parameters is 1/ඥߟ.  The phase advance per period 
as function of cavity focusing angle is shown in Fig.3, 
where the dotted line is the relation of equation (11), i.e. 
the smooth approximation results and the solid line is the 
relation of equation (10). We can see when phase advance 
is greater than 60 degrees, the relation (10) and (11) shows 
obvious difference in case of filling factor is less 1. From 
the discussion above, we can conclude that the smooth ap-
proximation is only valid when phase advance is less than 
60 degrees. 

When acceleration gradient and length of the cavity is 
fixed, as the filling factor is decreased, the phase advance 
is increased quickly and which will impose an important 
limitation of the applicable cavity voltage for high current 
machine, where the phase advance should be less than 90 
degrees. And with the filling factor decrease, the focusing 
strength is decreasing with sqrt of filling factor: 

݇௟ ൌ
ఙ

௅
ൎ

ఏ
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Figure 3: Phase advance per period as function of filling 
factor and focusing angle of cavity. 

NONLINEAR DYNAMICS 
If we define a vector as 

റݔ ൌ ሺ߶,ݓሻ, 

then equation (1) can be write as a vector differential equa-
tion 

ௗ௫റ

ௗ௦
ൌ ݂ሺݔറ,  ሻ.                                      (12)ݏ

The function f is periodic function of s with period of L. 
introducing the new variable t=s/L, system (12) transforms 
into the autonomous system 

ቐ

ௗ௫റ

ௗ௦
ൌ ݂ሺݔറ, ሻܮݐ
ௗ௧

ௗ௦
ൌ ܮ/1

                                  (13) 

in dimensional 3. The flow in phase space intersect with 
the plane  

ݐ ൌ ݊, ݊ ∈  ,ݎ݁݃݁ݐ݊ܫ

and we project the intersection point onto the plane t=0, the 
trajectory of the intersect point will reveal the dynamics 
structure of the system, just as Fig. 4 shows. 

By applying the method mentioned above, we can get 
some information of the dynamics structures of the system 
(13). The results are summarized as following: 

1) The dynamics structure is directly depended on the 
phase advance per period. When phase advance is 
less than 60 degrees, the dynamics structures is 
identical with that of smooth approximation time in-
dependent one, i.e., there is a clear boundary be-
tween stable and unstable area, and the size of the 
stable area is exactly same as the time independent 
system, just as Fig. 5 shows. It also proves that 
smooth approximation is valid when phase advance 
is less than 60 degrees; 

 
Figure 4: Poincare map in extended phase space. 

 
2) As phase advance per period increasing, the stable 

area is shrinking, especially when 
஢

ଶ஠
ൌ q/p , where p 

and q are integers, the islands around the stable area ap-
pear and the strongly reducing the limit of stability 
around the origin. This can be explained as the existing 
of the high order fixed points [3]. The phase portrait with 
phase advance of 90 degrees, 110 degrees and 120 de-
grees are shown in Figs. 6-9; 

3) When phase advance is 120 degrees, there are six 
third order fixed points, 3 of them are centre type, and 3 
of them are saddle type. When phase advance is 120 de-
grees, the saddle type fixed points collides with the 
origin and the stable area shrinks to zero, i.e., there is no 
stable area in phase space. 

 

Figure 5: Phase portrait with phase advance 60 degrees. 

PHASE ACCEPTANCE 
We have calculated numerically the limit of stability of 

the time dependent system of longitudinal motion along 
phase axis by checking that the orbit remain bounded after 
1000 iterates. The results are depicted in Fig. 9. We can the 
sudden shrink of the stable area at the rational tune. The 
phase acceptance remained constant for phase advance less 
than 60 degrees, then at around 70 degrees, the stable phase 
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Figure 6: Phase portrait with phase advance 90 degrees. 
 

 

Figure 7: Phase portrait with phase advance 110 degrees. 

 

Figure 8: Phase portrait with phase advance 120 degrees. 

 

Figure 9: Phase acceptance as function of phase advance 
per period. 
 
boundary decreases to about 1.5 times the synchronous 
phase, and at about 80 degrees, the boundary is decreased 
to about 0.8 times the synchronous phase, and when phase 
advance is greater than 120 degrees, the stable area is al-
most zero, and the motion becomes unstable universally. 
Further study shows, the aperture is only the function of 
phase advance, the trend is almost same for different syn-
chronous phase 

CONCLUSION 
The longitudinal motion of linac composed with short 

independent cavities separated by long drifts should be de-
scribed by the time dependent motion equation of (5), the 
smooth approximation is only valid when phase advance is 
less than 60 degrees. As phase advance increase, the stable 
area is shrinking and when phase advance is greater than 
120 degrees, there is almost no stable area and the motion 
becomes unstable. This is very important in linac design 
especially at low energy and phase jump point, where 
phase acceptance is very critical and special attention 
should be payed to avoid the particle loss because of the 
small phase acceptance at these points. 
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