# THE DC130 PROJECT: NEW MULTIPURPOSE APPLIED SCIENCE FACILITY FOR FLNR

S. Mitrofanov<sup>†</sup>, P. Apel, V. Bashevoy, V. Bekhterev, S. Bogomolov, O. Borisov, J. Franko, B.Gikal, G. Gulbekyan, I. Ivanenko, I. Kalagin, N. Kazarinov, V. Mironov, V. Semin, V. Skuratov, A. Tikhomirov, Joint Institute for Nuclear Research, 141980, Dubna, Russia

# Abstract

author(s), title of the work, publisher, and DOI. The main activities of Flerov Laboratory of Nuclear Reactions, following its name - are related to fundamental B science, but, in parallel, plenty of efforts are paid for  $\frac{1}{2}$  practical applications. Certain amount of beam time every attribution year is spent for applied science experiments on FLNR accelerator complex. For the moment, the main directions are: the production of the heterogeneous micro - and nano-structured materials; testing of electronic componaintain nents (avionics and space electronics) for radiation hardness: ion-implantation nanotechnology and radiation materials science. Basing on FLNR long term experience must in these fields and aiming to improve the instrumentation, the accelerator department start the Design Start cyclotron DC130 which will be dedicated machine for EUNP Following the user's reapplied researches in FLNR. Following the user's reguirements DC130 should accelerate the heavy ions with no mass-to-charge ratio A/Z of the range from 5 to 8 up to distributi fixed energies 2 and 4.5 MeV per unit mass. The first outlook of DC130 parameters, its features, layout of its casemate and general overview of the new FLNR facility ₹ny for applied science is presented.

## **INTRODUCTION**

2018). The main point is that for applied science people use 0 powerful machines which were created and developed to licence ( solve the wide range of fundamental research. The usage of 'science' accelerators for such activities is connected 3.0 which high cost of beam time and difficulty to meet quick changes of user's requirements. There is a "time lack" 2 problem when application begin to demand the beam time more than laboratory could provide to it in parallel with the its scientific plan's realization. Usually, it means that all erms of technical "bugs" and methodological questions were successfully fixed and answered, and users requesting the time as much as they could. That's why Flerov Laboratory the 1 of Nuclear Reaction of Joint Institute for Nuclear Reunder search starts the Design Study of the dedicated applied science facility based on the new DC130 cyclotron. The irradiation facility will be used mainly for the following 8 applications: creation and development of track mem-⇒ branes (nuclear filters) and the heavy ion induced modification of materials; activation analysis, applied radiowork chemistry and production of high purity isotopes; ionimplantation nanotechnology and radiation materials rom this science; testing of electronic components (avionics and space electronics) for radiation hardness. From the com-

122

mon user's requirements, operation simplicity and cost reasons the main parameters of future machine were chosen. The facility will be based on new DC130 isochronous cyclotron: multiparticle, double - energy machine, capable with light and heavy ions up to bismuth (2 and 4.5 MeV/nucleon).

The research works on radiation physics, radiation resistance of materials and the production of track membranes will be carrying out by using the ion beams with energy of about 2 MeV per unit mass and A/Z ratio in the range from 7.58 to 8.0. Besides these, testing of avionics and space electronics by using of ion beams (<sup>20</sup>Ne, <sup>40</sup>Ar, <sup>84,86</sup>Kr, <sup>132</sup>Xe, <sup>197</sup>Au or <sup>209</sup>Bi) with energy of 4.5 MeV per nucleon and with mass-to-charge ratio A/Z in the range from 5.0 to 5.5, will be proceeded. One of the significant requirements for this application is the "ion cocktail" means mixed of highly charged heavy ions with the same or very close mass/charge ratios produced and injected in the same time. Once the ions will be accelerated, the different species will be separated by the fine tuning of the cyclotron magnetic field. This issue allows to switch the type of ions quick and will reduce the time which user should spent for full scale testing of its samples.

The idea is to effectively use existing stuff to modernize and totally upgrade the old U200 machine which was decommissioned in 2013, because of being outdated physically and technologically. The design will be based on existing systems of IC100 (Fig.1) and U200 (Fig.2) cyclotrons [1].

The working diagram of DC130 cyclotron is shown in Fig.3. The acceleration of ion beam in the cyclotron will be performed at constant frequency f = 10.622 MHz of the RF-accelerating system for two different harmonic numbers h. The harmonic number h = 2 corresponds to the ion beam energy W = 4.5 MeV/u and value h = 3corresponds to W = 1.993 Mev/nucleon. The intensity of the accelerated ions will be about 1 pµA for lighter ions  $(A \le 86)$  and about 0.1 pµA for heavier ions  $(A \ge 132)$ .

The axial injection system and its beam line for new accelerator will be adapted from the existing IC100 cyclotron systems.

In the frame of reconstruction of U200 to DC130 it is planned to upgrade the cyclotron magnetic structure, replace the magnet main coil and renovate RF system. Other systems: beam extraction, vacuum, cooling, control electronics and radiation safety will be new.

<sup>†</sup> mitrofanov@jinr.ru

14th Int. Conf. on Heavy Ion Accelerator Technology ISBN: 978-3-95450-203-5



Figure 1: Layout of IC100 cyclotron.



Figure 2: Layout of U200 cyclotron.



Figure 3: Working diagram of DC130 cyclotron. The main parameters of DC130 cyclotron are contained in Table.1.

Table 1: DC130 Cyclotron Main Parameters

| 5                           |                         |           |
|-----------------------------|-------------------------|-----------|
| Pole (extraction) radius, m | 1(0.88)                 |           |
| Magnetic field, T           | 1.729÷1.902             |           |
| Number of sectors           | 4                       |           |
| RF frequency, MHz           | 10.622                  |           |
| Harmonic number             | 2                       | 3         |
| Energy, MeV/u               | 4.5                     | 1.993     |
| A/Z range                   | 5.0÷5.5                 | 7.577÷8.0 |
| RF voltage, kV              | 50                      |           |
| Number of Dees              | 2                       |           |
| Ion extraction method       | electrostatic deflector |           |
| Deflector voltage, kV       | 60                      |           |

# ECR SOURCE AND AXIAL INJECTION SYSTEM

The axial injection system [2] of DC130 cyclotron will be adapted from the existing IC100 cyclotron one consisted of the 18 GHz DECRIS-5 ion source which was developed based on sources of the DECRIS-4 (14 GHz) series with copper windings created at FLNR (JINR, Dubna) by intensifying the magnetic structure and changing to a new type of microwave oscillator. The DECRIS-5 ion source was created for industrial application and characterized by increased reliability. It was already successfully commissioned in the framework of DC110 project (mass production of the track membrane) [3]. Also transport beam line will be based on DC110 experience [4].

# **DC130 MAGNETIC SYSTEM**

The magnetic system of DC130 cyclotron will be based on the existing U200 cyclotron one. The magnetic field distribution in the median plane of the DC130 cyclotron magnet has been found by means of computer simulation with 3D OPERA program code [5]. The main parameters of the magnet are contained in Table 2.

| Size of the magnet, mm            | 5000×2100×3600 |  |
|-----------------------------------|----------------|--|
| Diameter of the pole, mm          | 2000           |  |
| Distance between the poles, mm    | 160            |  |
| Number of the sectors pairs       | 4              |  |
| Sector angular extent (spirality) | 43° ( 0° )     |  |
| Sector height, mm                 | 45             |  |
| Distance between the sectors      | 30             |  |
| (magnet aperture), mm             |                |  |
| Distance between the sector and   | 20             |  |
| pole (for correcting coils), mm   |                |  |
| Number of radial coils            | 6              |  |
| Maximal power, kW                 | ≈ 300          |  |

 Table 2: DC130 Cyclotron Magnet Main Parameters

The operation mode change will be implemented only by variation the level of the magnetic field in the range from 1.729T to 1.902T and its isochronous distribution will be formed operationally by means of six radial correcting coils. The detail information about magnetic system of DC130 cyclotron contains in report [6].

#### **RF SYSTEM**

The working frequency of RF system is constant and equal to 10.622 MHz. The scheme of RF-resonator is shown in Fig.4. The dashed line designates the placement of the ground plate. Two generators are used for independent feed of two RF resonators.



Figure 4: Scheme of RF resonator.

The feedback system ensures precise tuning of RF phase and amplitude at both dees independently. The evaluated power of each RF generator is equal to 11.5 kW.

## **BEAM EXTRACTION SYSTEM**

The scheme of beam extraction system of DC130 cvclotron is shown in Fig. 5. The dashed line is the cyclotron orbit corresponding to average radius of 88 cm. The if red line is extraction orbit ending in the object point of the experimental beam lines. The beam extraction system includes the electrostatic deflector ESD and two magnetic static channel MC1,2. In accordance with results of simulation, the maximum voltage at the deflector ESD is equal to 60 kV. The magnetic field gradients in MC1,2 channels are equals to 25 T/m and 8 T/m correspondingly.



Figure 5: Scheme of DC130 extraction system.

### **EXPERIMENTAL BEAM LINES**

The set of the experimental beam lines includes track membrane line, SEE testing line and radiation physics line. The scheme of the experimental beam lines is shown in Fig.6. The common part of the channel consists of extraction bending magnet, the quadrupole lens triplet and commutating magnet. The centre of the extraction bending magnet is an object point for all beam line. The expe-

124

rience of working at U400, U400M cyclotrons will be used during developing the experimental channels for these applications.



Figure 6: Scheme of experimental beam lines. From left to right: RP line; SEE testing line; TM line

#### **CONCLUSION**

Flerov Laboratory of Nuclear Reaction begins the works under the conceptual design of the dedicated applied science facility based on the new DC130 cyclotron. The main characteristics of it are defined and fit main user requirements well. The detailed project will be ready in December'2018.

#### REFERENCES

- [1] G. Gulbekyan, B. Gikal, I. Kalagin, N. Kazarinov, "Status Report and Future Development FLNR JINR Heavy Ions Accelerators Complex", in Proc. HIAT09, 8-12 June 2009, Venezia, Italy, p.59-63, http://www.jacow.org
- [2] N. Kazarinov, J. Franko, G. Gulbekian, I. Ivanenko, I. Kalagin, "Simulation of the Axial Injection Beam Line of the Reconstructed U200 Cyclotron of FLNR JINR", presented at HB2018, Daejeon, Korea, June 18-22, 2018, paper WEP2PO027.
- [3] A.A. Efremov, V.V. Bekhterev, S.L. Bogomolov et al., "DECRIS-5 ion source for DC-110 cyclotron complex results of the first tests", in Proc. ECRIS2012, Sydney, Australia.
- [4] B. Gikal, S. Dmitriev, G. Gulbekian, N. Kazarinov, et al., "Cyclotron Based Complex IC-100 for Scientific and Applied Research", in Proc. 18-th Int. Conf. on Cyc. and their App., CYC07, 1-5 October 2007, Giardini Naxos, Italy, http://www.jacow.org
- [5] "OPERA-3D Reference Manual", Oxford OX5 1JE, England. October 2012.
- N. Kazarinov, [6] G. Gulbekian, I. Kalgin, I. Ivanenko, J. Franko, "The Choosing of Magnetic Structure of Isocronous Cyclotron DC-130 for Applied Application", presented at HB2018, Daejeon, Korea, June 18-22, 2018, paper THPWWC03.