
LCLS-1 CAVITY BPM ALGORITHM FOR UNLOCKED DIGITIZER

CLOCK

Abstract

Cavity BPMs commonly use the fundamental TM010

mode (excited either in the x/y cavity itself or in a separate

“reference” cavity) which is insensitive to beam position

as a reference signal, not only for amplitude normalization

but also as a phase/time reference to facilitate synchronous

detection of the signal derived from the position-sensitive

TM110 mode. When taking these signals into the digital

domain the reference and position signals need to be acquired

by a synchronous clock. However, unless this clock is also

locked to the accelerating RF absolute, timing information

is lost which affects the relative phase between reference and

position signals (assuming they are not carefully tuned to

the same frequency).

This contribution presents a method for estimating the

necessary time of arrival information based on the sampled

reference signal which is used to make the signal detection

insensitive to the phase of the digitizer clock. Running an

unlocked digitizer clock allows for considerable simplifica-

tion of infrastructure (cabling, PLLs) and thus decreases

cost and eases maintenance.

INTRODUCTION

Cavity Beam-Position Monitors (BPMs) inherently offer

a very high resolution [1, 2]. A beam of charged particles

passes a cylindrical cavity and excites the electro-magnetical

eigenmodes of the device. The coupling of the beam to some

of these modes, in particular the “dipole-mode” TM110 is

very sensitive to the transversal beam position. The struc-

tures to extract the signals from the cavity are carefully

designed to be sensitive to TM110 only and reject other

modes [3].

TM110 is also excited by a centered but oblique beam

trajectory and “slanted” bunches [1] but the resulting signal

is in phase-quadrature to the position signal.

The fundamental TM010 mode of a second, “reference”,

cavity which is largely insensitive to the beam-position is

also measured so that the position-sensitive signal can be

normalized to the beam charge and phase.

Figure 1 shows the typical hardware employed to acquire

the cavity-BPM signals. Three RF signals (e.g, X-band),

originating at the X- and Y-ports of the main cavity as well

as the output of the reference cavity are fed into a analogue

receiver and subsequently digitized. The receiver uses mul-

tiple mixing stages and/or an image-rejecting configuration.

In order to maintain the highest possible resolution of

the system and to reject (or, depending on the application:

detect) the effects of an oblique trajectory (or bunch) a phase-

synchronous detection algorithm is commonly used [1, 2, 4]

with the reference cavity establishing the necessary time or

phase reference.

Obviously, the three channels must use a common LO as

well as a common ADC clock in order to maintain phase-

synchronicity among the channels.

Figure 1: Cavity BPM receiver hardware block diagram.

A synchronous detection algorithm amounts to the esti-

mation of the amplitude of a “known” signal (shape) in the

presence of noise [5]. A generic, linear and time-discrete

detector for a signal s(t) which is assumed to be time- and

band-limited (i.e., it can reasonably approximated by a suit-

able periodic continuation) can be described by Eq. (1):

Â =
1

N
Σ
N−1
n=0 s(nTs − to ) f (nTs ) (1)

i.e., the signal is correlated with a (normalized1) “test”-

function f (t).

In addition to the test-function we also must know or

estimate the “starting” time to of the signal which is also

called “Time of Arrival” or TOA.

The subject of this paper is a method for TOA estimation

which is suitable for cavity BPMs with a free-running ADC

clock. The ADC is usually triggered by the timing system

but the TOA depends on the phase of the ADC clock and is

unknown to at least ± 1
2

sampling period.

REVIEW OF COMMON METHODS FOR

TOA ESTIMATION

In the context of cavity BPMs it is important to consider

that one of the advantages of a synchonous detector is its

superior SNR when the signal amplitude is small, which is

the case when the beam passes close to the electrical center

of the main cavity.

1 so that 1
N
Σ
N−1
n=0

f 2 (nTs ) = 1.
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This observation suggests that the signal of the reference

cavity which is always available with a good SNR is the

preferable target for TOA estimation – provided that it can

be assumed that the relative timing between reference and

positional signal remains constant all the way down to the

ADCs.

Several methods have and can be used:

• Tune the cavities to the same frequency (e.g. [4], [6],

[7]). By using a complex exponential for the test func-

tion in Eq. (1), to will cancel out.

• Phase-lock the ADC clock to the beam and thus main-

tain a fixed timing (probably – the publications are not

always very explicit – used by several authors; e.g., [8]).

• Observe an auxiliary signal (e.g., crystal-detector, [1])

and use for TOA estimation.

• Use an algorithm to estimate TOA from the reference

signal.

The last approach has the advantage that neither careful

tuning nor an expensive clock distribution infrastructure is

required. Since it can use the phase information contained

in the reference signal we can also expect this method to

yield a better estimate than a crystal-detector.

ALGORITHM FOR TOA ESTIMATION

We shall now proceed to present the algorithm used at

LCLS. In order to simplify the mathematical notation we

will use a continuous-time representation but assume that

all signals are time- and band-limited (see above) so that

carrying the results into the discrete-time domain is straight-

forward.

TOA Definition

Consider a causal signal s(t) and a “suitable”, normalized

test-function f (t) so that the correlation integral:

R(τ̂) =

∫ ∞

0

s(t + τ̂) f (t) dt (2)

exists. We then define the time of arrival, τA, with respect

to the test-function f (t), as the value of τ̂ which maximises

the above correlation, Eq. (2).

If f (t) is chosen to be proportional to the signal shape then

R(τ̂) is proportional to the signal autocorrelation and has

a single maximum at τ̂ = 0 (because the signal is assumed

to be time-limited it cannot be periodic). In some respects

(e.g., maximization of SNR in white noise) such a choice

is indeed optimal [5] but any f (t) for which Eq. (2) has a

maximum is suitable.

Spectral Representation

The Fourier-transform of Eq. (2) is

R(τ̂) =
1

2π

∫
+∞

−∞

S(ω)F∗(ω)e− jωτ̂ dω (3)

where the asterisk denotes the complex conjugate of F (ω),

the Fourier-transform of f (t).

At this point we must pay some attention to the fact that

the reference-signal of a cavity BPM does not only have

an unknown TOA with respect to the digitizer clock – any

(unlocked) LO(s) in the system also introduce an unknown

phase shift. Such a phase shift can be described in the

frequency-domain

φ(ω) = + jsign(ω)φ

Adding an estimated phase shift φ̂ to Eq. (3) and making

use of the hermititian symmetry yields

R(τ̂, φ̂) =
1

π

∫
+∞

0

|S(ω)F (ω) | cos(Ψ(ω)− φ̂−ωτ̂) dω (4)

whereΨ is the phase between S and F∗. The estimated phase

φ̂ must be zero for ω = 0 and is constant elsewhere (due to

the sign function vanishing at ω = 0). We use the symbol φ̂

to emphasize the special behavior of φ̂(0). This is important

to remember when moving to a discrete-time representation.

TOA and Phase Estimation

We can now proceed to search for the time τ̂ and phase φ̂

which maximise Eq. (4). We omit the explicit dependence

of S, F and Ψ on ω, the integration boundaries, introduce

A = |SF |, take the partial derivatives to φ̂ and τ̂, respectively,

and set equal to zero:

∂R(τ̂, φ̂)

∂φ̂
= 0 = −

1

π

∫
A sin(Ψ − φ̂ − ωτ̂) dω (5)

∂R(τ̂, φ̂)

∂τ̂
= 0 = −

1

π

∫
A sin(Ψ − φ̂ − ωτ̂)ω dω (6)

Our next assumption is that close to the optimum, the

phase error

∆(ω) = Ψ(ω) − φ̂ − ωτ̂ (7)

is very small so that we can approximate sin(x) ≈ x. It is

very important to note that we do not have to assume that

the estimated phase nor the estimated TOA be small! We

just assume that the linear phase φ̂ − ωτ̂ “tracks” the phase

Ψ of the correlation well.

If, e.g., we use the signal shape itself for the test function

f (t) then Ψ becomes a linear function of the LO phase and

the unknown TOA, and Eq. (7) simplifies to

∆(ω) = Ψ(ω) − φ̂ − ωτ̂ = φLO + ω τA − φ̂ − ωτ̂

i.e., when the estimated φ̂ and τ̂ match the ‘true’ values then

∆ vanishes everywhere.

The linearized system of equations can be stated

φ̂
∫
A dω + τ̂

∫
A ω dω =

∫
A Ψ dω

φ̂
∫
Aω dω + τ̂

∫
A ω2 dω =

∫
A Ψω dω

(8)

and trivially solved for φ̂ and τ̂. Again: when moving into

the discrete-time domain then we must be careful with the

DC term and remember that sign(ω) = 0.
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However, the estimator is even useful if the phase Ψ of the

correlation SF∗ deviates from a linear phase. Because phase-

and time-shift are linear operations and the estimator is also

linear this means that a differential estimation between two

“shots” of a signal with each one having a random phase-

and time-delay is still possible (see Appendix).

RESULTS

The proposed algorithm has been implemented in the

BPM processing software at SLAC. An AltiVecTM [9] co-

processor is employed to FFT the raw signals and to compute

the various sums in Eq. (8). The phase and TOA of the posi-

tional signals are corrected in the frequency-domain and then

correlated with a filter response (still in frequency domain).

This operation is equivalent with a digital downconversion

as it is used by several authors [1], [4] and yields the desired

complex amplitude from which position and trajectory angle

can be extracted. The details are, however, beyond the scope

of this paper.

Figure 2 shows the digitized signal of a LCLS reference

cavity for two beam pulses. The effect of the unlocked ADC

can easily be seen.

Figure 2: Reference signal of two beam pulses with unlocked

ADC and LO. The sub-plot zooms to samples #30 − 45.

As an example, we used a test function f (t) which has the

frequency-response of an ideal band-pass and covers a band-

width of 20 frequency bins (see Fig. 3). The time-domain

response is depicted in Fig. 4.

The result of applying the phase- and TOA estimation to

the original waveforms is presented in Fig. 5. In addition, the

waveforms were normalized to the beam-charge – something

that would not be done in case of a position calculation but

was performed here to show how the two waveforms match

up after correcting for TOA.

A time-shift by a (not necessarily integer-) multiple of the

sampling interval can trivially be performed in the frequency-

domain.

CONCLUSION

A method for TOA estimation has been presented which

can be used by the signal-processing of a cavity BPM system

Figure 3: FFT (modulus) of the beam pulses and response

of the test function (multiplied by 40000 to make it visible).

Figure 4: Time-domain response of the example test func-

tion.

Figure 5: Reference signal of two beam pulses after applying

the correction for τ̂ and φ̂.

in order to correct for the effect of an unlocked digitizer clock

even if the reference- and position cavities are not tuned to

exactly the same frequency.

Relaxing the tuning requirements and obsoleting the need

for a clock- distribution infrastructure results in considerable

savings.
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APPENDIX

We can abbreviate Eq. (8) using matrix notation

M x̂ = y

with x̂ a column-vector containing the estimated values, M

the matrix which depends only on the amplitude function

A(ω) and y which involves integrals of the phase but is linear

in the phase

y(Ψ + γ) = y(Ψ) + y(γ)

In particular, computing y(φ) with φ = const (arbitrary

phase shift) and y(ωτ) (arbitrary time shift) we note that the

coefficients of y become identical with the coefficients of

M and thus

M x̂ = y(Ψ) + M x

with the vector x containing φ, τ. Therefore, a non-vanishing

y(Ψ) merely introduces a phase and time-offset and the

difference in estimation between two “shots” with unknown

x1 and x2 reduces to

M x̂2 − M x̂1 = y2 − y1 = y(Ψ) − y(Ψ) + M x2 − M x1

M ( x̂2 − x̂1) = M (x2 − x1)

which shows that the estimator yields the “exact” result (in

absence of measurement errors, noise etc.) for phase- and

time-differences.
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