
THE CERN BEAM INSTRUMENTATION GROUP OFFLINE ANALYSIS

FRAMEWORK

B.Kolad, J-J Gras, S. Jackson, S. Bart Pedersen, CERN, Geneva Switzerland.

Abstract
Beam instrumentation (BI) systems at CERN

require periodic verifications of both their state and
condition. An instrument's condition can be diagnosed by
looking for outliers in the logged data which can indicate
the malfunction of a device. Presently, experts have no
generic solution to observe and analyse an instrument's
condition and as a result, many ad-hoc Python scripts
have been developed to extract historical data from
CERN's logging service. Clearly, ad-hoc developments
are not desirable for medium/long term maintenance
reasons and therefore a generic solution has been
developed. In this paper we present the Offline Analysis
Framework (OAF), used for automatic report generation
based on data from the central logging service. OAF is a
Java / Python based tool which allows generic analysis of
any instrument's data extracted from the database. In
addition to the generic analysis, advanced analysis can
also be performed by providing custom Python code. This
paper will explain the steps of the analysis, its scope and
present the kind of reports that are generated and how
instrumentation experts can benefit from them. It will
subsequently demonstrate how this approach simplifies
debugging, allows code re-use and optimises database and
CPU resource usage.

INTRODUCTION

Both scientific and business domains have
witnessed exponential growth of available data.
Processing and analysing huge amounts of data is a major
problem and has become it's own scientific field leading
to the creation of many commercial and open source
tools over the years. The need for similar tools in the
Beam Instrumentation group at CERN has already been
identified in the past [1]. The BI group decided to make
their own tool because of the group's very specific
constraints (the database can only be accessed via a
dedicated java API, and users often need tailor made
reports). LHC systems produce large quantities of data
which can be used for checking the health of various
beam instrumentation systems. OAF aims to simplify and
unify the work-flow of the data analysis and problem
detection.

After the evaluation of technologies on which we
could base our analysis solution, Java, C++ and Python
emerged as the primary candidates. These three
programming languages have a long history at CERN and
are widely used inside the organisation. We finally choose
Python, as it offers a rich choice of scientific libraries for
numerical and statistical analysis (for example we make
heavy use of the Python Panda and Matplot libraries).

Furthermore, prototyping in an interpreted language is
also much faster than in languages requiring compilation.
Python is also beginner friendly and can be used by users
with limited programming experience – an important
feature for our needs if OAF is to offer a custom analysis
feature which allows broader analysis via dedicated code
supplied by instrument experts.

STATUS BEFORE OAF

Data logged by the LHC is stored in a so-called
logging database [2] and is accessible via a web-based
user interface (Timber) which accesses data via a Java
API, but provides limited analysis capabilities. This data
is regularly extracted and analysed off-line by experts, to
elicit useful information about an instruments
performance. In the absence of a standard means to do
this, instrument specialist inevitably started developing
various independent tools. Each of these tools had to
support the same set of operations:

• Data extraction

• Statistical analysis

• Production of a report document

The absence of any framework to guide the developers of
analysis tools, lead to many problems including:

• Code duplication

• Sub-optimal means of data extraction (by

performing an out of process system call, which
in turn ran a generic Java command line tool)

• The data extracted by the Java command tool

was subsequently dumped into a text file and
then parsed into various python data structures

• Some scripts were moved to newer Python /

library versions while others remained on out-
dated versions

• Very often authors of scripts stayed at CERN for

a limited period of time leaving the maintenance
burden on newly arrived colleagues.

Dealing with this script zoo became a complex
software engineering task in itself, and it was soon
obvious that the common functionality of these various
scripts had to be handled differently so that the
maintenance of the infrastructure of the resulting
framework should not concern the instrument experts.

DATA SOURCE

The Logging Service stores data coming from pre-
defined signals into an Oracle database, and provides a
Java API accompanied by a generic GUI (Timber) which
can be used to extract and visualise logged data.

Proceedings of IBIC2016, Barcelona, Spain TUPG45

Machine Parameter Measurements

ISBN 978-3-95450-177-9

449 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Forcing data retrieval only via this API allows for a better
monitoring of database loads and avoids requests for the
amount of data that could potentially take down the entire
database. Data can be extracted by creating dedicated
queries, or by the use of a so-called snapshot (a stored
query identified by a unique name). Rather than using the
aforementioned Java command tool, OAF retrieves data
by directly calling the Java API using JPype[3] with the
desired snapshot name. JPype allows the use of Java
libraries directly in Python programs which is very
convenient and avoids storing variables in temporary files
as was done in the past. A dedicated Python module
converts Java objects into python dictionaries for easy
analysis by the framework.

FRAMEWORK ARCHITECTURE

One of the most basic software design principles in
modern software engineering is the separation of tasks. A
computer program should be divided into distinct
components that, are responsible for single well defined
tasks. In previous ad-hoc scripts this principle was
violated and quite often a single module performed many
distinct tasks (extracting data, analysis, producing the
report, etc.). One of OAF's design goals was modularity
which implicitly embraces the separation of tasks
principle. Adopting this principle, simplifies the
maintenance and development process. If for example the
underlying Java API ever changes, only one module has
to be updated, and the rest of the framework is shielded
from this change. It also allowed different members of the
OAF team to work independently on different modules
after agreeing on common interfaces. The resulting OAF
framework consists of following parts:

• DB connection module which is responsible for

accessing and converting data to an agreed
python data structure.

• Excel files which define the configuration of the

analysis. Configuration is achieved by the
modification of several spreadsheets. This allows
the configuration of many features of the
framework including a list of participants to be
notified when a report has been generated, the
declaration of new variables based on extracted
ones, the criteria for alarms, the choice of plots,
etc. It is important to note that this part is fully
generic so that instrumentation experts do not
have to provide any code in order to configure
this part of the analysis.

• Report Generator GUI. OAF is a command line

tool with parameters such as the date of the
analysis, snapshot name etc. provided as
command line arguments. The Report Generator
is a GUI which simplifies the request for a new
report, with for example, dates chosen from a
calendar widget.

• A module with generic analysis code. The

common part of all analysis is performed in this
module with its configuration retrieved from the
Excel spreadsheet.

• Optional modules with custom code. In the case

where more sophisticated analysis is required,
OAF provides a place holder for dedicated code
to be provided by the instrumentation expert.

• Web application which allows browsing existing

reports in an easy and user friendly way.

ANALYSIS FLOW

Automation is an important aspect of the OAF
framework. A typical analysis can be divided into
separate phases, which are well defined and roughly
correspond to the functionality of the modules described
previously (Fig. 1).

Figure 1: Analysis control flow. Blue: mandatory steps.
Green optional steps.

Analysis is fully automated and can be invoked on a
daily basis by a time-based scheduler (Linux CRON).

OAF provides generic core functionality to perform each
of the following steps during an analysis:

• Extract Data: retrieve data from the database and

perform data conversions
• Make summary page: describe the scope of the

report, along with devices and variables used
• Analyse alarms: provide statistics on extracted

data and perform checks with user-configured
constraints

• Make default plots (Optional): produce results

and reports of available data and alarms
• Make extra plots (Optional): produce more

complex plots such as FFTs etc
• Run Expert Code (Optional): runs third party

code submitted by the expert
• Inform: Depending on provided configuration

E.g. sends emails with the report, stores report
for further analysis

TUPG45 Proceedings of IBIC2016, Barcelona, Spain

ISBN 978-3-95450-177-9

450C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Machine Parameter Measurements

 STRUCTURE OF THE REPORT FILE

The first page of the report provides information
about devices and variables covered by the analysis and
specified time window, with a summary of any alarm
raised. The rest of the report is made up of plots and
tables as defined by the configuration provided in the
Excel spreadsheet. For each device retrieved, plots of the
extracted data along with any related alarms are
generated.

Fo r e xa mple , t he BLM-LHC-temp report
diagnoses the condition of an LHC beam loss monitor
acquisition card. In this case the temperature of the card is
the parameter we want to monitor. Figure 2 shows this
measured temperature for 16 different cards for a given
VME crate. Each point on the graph contains statistics
such as average, minimum and maximum values along
with the standard deviation for a daily measurement. The
green band indicates the range of allowed temperature
values. In figure 2 we can immediately identify six
outliers indicating a failure of temperature measurement
for cards 5 to 7 and cards 13 to 15.

Figure 2: Example of an OAF plot.

There are numerous alarms, various plot types, and
several facilities to perform variable conversions which
relieves the user from writing such code. OAF can raise
alarm in the following instances:

• DISCRETE: alarm raised if values do not

belong to the given list of values.
• MEASURE: alarm raised if values do not

remain within given range.
• STATUS_BIT: alarm raised if the state of

status bit register does not correspond to the
nominal state of each bit

• SWITCH: alarm is raised each time a value is

changed.

Sets of available plots includes:

• HISTOGRAM

• FFT

• STATISTICS (mean, deviations)

• and many others..

Quite often we need to transform the extracted data in
order to carry out further analysis. The most common
conversion types have been identified and are made
available to the user. Generated this way variables can be
plotted in the generic plots, as well as being used for the
alarm checking. More than twenty types of conversions
are available including statistics calculations, FFTs, etc.

EXAMPLE USE CASE

The daily BCT_SPS_safety reports, provide offline
monitoring of the 2 DC current transformers used in the
SPS North Area for personal safety matters. The report
contains a check which compares the recordings of these
2 DCCTs during the last 24 hours. All differences are
reported as a potential error of one DCCT. As an example
we can see in Fig. 3 that a spurious signal appeared on
BCT_897 (blue trace) around 00:45 on the 7th of August
2016. This automatic analysis is particularly useful to
track this kind of rare event.

Figure 3: Top Plot : Signal proportional to DC beam
current during an SPS Cycle (one trace for each DCCT).
Bottom plot : Shows the evolution of the 2 status flags
during the cycle (high level = OK for extraction, low
level = NOT OK for extraction) and in red, the
difference of the two flags.

RESULTS

OAF analysis tasks are executed every night by
an automatic CRON task. After the analysis is performed,
interested recipients receive an email with a short
summary of the findings (how many alarms ware raised
etc.) and a link to the report. Adding a configuration of
new analysis is done via an Excel configuration file,
which is a much more robust and easier than the previous
approach (creating dedicated python script). We can
easily extend OAF to support more types of alarms or
plots just by updating the generic part of the framework
without breaking backward compatibility with existing
analysis tasks. Making such changes previously required
separate modification of each python script.

Presently, some forty reports are produced every
day, covering beam position measurement, loss

Proceedings of IBIC2016, Barcelona, Spain TUPG45

Machine Parameter Measurements

ISBN 978-3-95450-177-9

451 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

measurement, current measurement and profile
measurement in all of CERN's accelerator complex (LHC,
SPS, PS, PS BOOSTER...). Two thirds of these reports
only rely on the generic code and features. Some reports
use expert code included into the framework to add some
specific analysis and plots. Finally, a recurrent “OAF
outcomes” topic has been added to our regular internal
technical board meetings where we present interesting
observations to all BI experts as well as explaining any
new features of the framework.

ACKNOWLEDGEMENT

We thank P. Odier, CERN, for providing
information on BCT_SPS_safety report usage.

REFERENCES

[1] S. Jackson, “A framework for off-line verification of
beam instrumentation system at CERN“, in Proc. 14th Int.
Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’13), San Francisco, USA, Oct.
2013, paper MOPPC139, pp. 435-438

[2] C. Roderick et al., “The LHC Logging Service: Handling
Terabytes of On-line Data”, in Proc. 12th Int. Conf. on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS2009), Kobe, Japan, Oct. 2009, paper
WEP005, pp. 414-416.

[3] http://jpype.sourceforge.net/

TUPG45 Proceedings of IBIC2016, Barcelona, Spain

ISBN 978-3-95450-177-9

452C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Machine Parameter Measurements

