
A HARDWARE AND SOFTWARE OVERVIEW ON THE NEW BTF TRANS-
VERSE PROFILE MONITOR

B.Buonomo, C. Di Giulio, L.G. Foggetta , INFN † – Laboratori Nazionali di Frascati, Frascati, Italy
P.Valente, INFN – Sezione di Roma, Rome, Italy

Abstract
In the last 11 years, the Beam-Test Facility (BTF) of the

DAFNE accelerator complex, in the Frascati laboratory,
has gained an important role in the EU infrastructures de-
voted to the development of particle detectors. The facility
can provide electrons and positrons, tuning at runtime dif-
ferent beam parameters: energy (from about 50 MeV up to
750 MeV for e- and 540 MeV for e+), intensity (from sin-
gle particle up to 1010/bunch) and pulse length (in the
range 1.5–40 ns). The bunch delivery rate is up to 49 Hz
(depending on the operations of the DAFNE collider) and
the beam spot and divergence can be adjusted, down to
sub-mm sizes and 2 mrad (downstream of the vacuum
beam-pipe exit window), matching the user needs. In this
paper we describe the new implementation of the second-
ary BTF beam transverse monitor systems based on
ADVACAM FitPIX® Kit detectors, operating in bus syn-
chronization mode externally timed to the BTF beam. Our
software layout includes a data producer, a live-data dis-
play consumer, and a MEMCACHED caching server. This
configuration offers to BTF users a fast and easy approach
to the transverse diagnostics data using TCP/IP calls to
MEMCACHED, with a user-friendly software integration
of virtually any DAQ system. The possibility of sharing
mixed data structures (user-generated and BTF diagnos-
tics) allows to completely avoid the complexity of hard-
ware synchronization of different DAQ systems.

THE DAΦNE BEAM TEST FACILITY
(BTF)

The BTF (Beam Test Facility) is part of the DAΦNE ac-
celerator complex: it is composed of a transfer line driven
by a pulsed magnet allowing the diversion of electrons or
positrons, usually injected into to the DAΦNE damping
ring, from the high intensity LINAC towards a fully
equipped experimental hall. The facility can provide
runtime tuneable electrons and positrons beams in a de-
fined range of different parameters. The beam energy can
be selected from about 50 MeV up to 750 MeV, for elec-
trons, and 540 MeV for positrons. In dedicated mode
(DAΦNE off), the beam pulse length can also be adjusted
in 0.5 steps from 1.5 to 40 ns. The delivery rate is depend-
ing on the DAΦNE injection frequency (25 or 50 Hz) with
a duty cycle also changing according to the DAΦNE injec-
tion status, up to 49 bunches/s. Two major modes of oper-
ations are possible, depending on the user needs: high and
low intensity. In the high intensity mode the LINAC beam
is directly steered in the BTF hall with a fixed energy (i.e.
the LINAC one, fixed to 510 MeV during the collider op-

erations) and with reduced capability in multiplicity selec-
tion (typically from 1010 down to 104 particles/bunch). In
the low intensity mode a step Copper target, allowing the
selection of three different radiation lengths (1.7, 2 or 2.3
X0), is inserted in the first portion of the BTF line for in-
tercepting the beam: this produces a secondary beam with
a continuous full-span energy (from LINAC energy down
to 50 MeV) and multiplicity (down to single parti-
cle/bunch), according to the setting of a 43° selecting di-
pole and of two sets of horizontal and vertical collimators.
The typical momentum band is well below 1% down to 50
MeV. A pulsed dipole magnet at the end of the LINAC al-
lows alternating the beam between the DAΦNE damping
ring and the test beam area, thus keeping a pretty high BTF
duty cycle, assuring an average of at least 20 bunches/s
during the injection in DAΦNE, when BTF operates in the
low intensity regime.

BTF PIXEL DETECTOR LAYOUT
A general overview of the BTF detectors and a descrip-

tion of the related software can be found here [1, 2].
Detector beam-testing generally require a fast transverse

beam imaging during runtime, with some pre-analysis ca-
pability and, as in the BTF case, with a stable, reproducible
and well-known response in the full range of energy, mul-
tiplicity and transverse dimensions of the particle beam. In
addition, taking into account the BTF heavy work-cycle
(beam is generally allocated in one-week slots for a mini-
mum of 25 up to 40 weeks/years, including BTF-dedicated
shifts), the equipment has to be reliable, robust, and with
an easy maintenance, in order to guarantee full readiness
and high-availability for the users purposes. For the same
reasons, the related low-level software has to comply with
these demanding requirements: not only very high reliabil-
ity, but also easy and efficient integration in the vast variety
of user acquisition software codes. Concerning the high
level software, we decided to have the possibility of a fully
featured runtime data display using LabVIEW®.

ADVACAM Silicon Pixel Detector
In [1], we described the setup based on a MEDIPIX-like

silicon pixel detector with ADVACAM FitPIX® Kit elec-
tronics, at first made routinely available to the users via the
basic version of the provided software, PIXET®, imple-
mented in the BTF timing and virtual machine sub-sys-
tems. This solution well accomplished data acquisition and
data-logging tasks (customizable thanks to the possibility
of python scripting), but we decided to move to a com-
pletely custom low level C-code to better match our facility

†luca.foggetta@lnf.infn.it

WEPG73 Proceedings of IBIC2016, Barcelona, Spain

ISBN 978-3-95450-177-9

818C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Transverse Profile Monitors

and user requirements of a run-time data retrieval and han-
dling of the pixel data (sharing with heterogeneous acqui-
sition and storage systems, data display, basic analysis and
beam parameters extraction, etc.), capable of sustaining the
full BTF repetition rate of 50 Hz.

FitPIX is a Medipix/Timepix detector interface with
readout speed of up to 90 frames per second for single de-
tector layer, in particular our Timepix sensors have a
square pixel of 55 μm side arranged in a 256×256 pixels
matrix (side length about 15 mm) for a square sensitive
area of about 2 cm² and 300 μm of thickness.

Multiple FitPIX devices can be used essentially for two
purposes: forming a particle tracker or as multilayer im-
ager. The integration of a multiple sensors can be done es-
sentially with two methods: the first by attaching up to four
Timepix detector layers (single gap of 3.6mm, maximum
overall longitudinal length about 20mm); the second pos-
sibility, allowing an arbitrary gap between each sensor
plane, is to connect more FitPIX devices in daisy chain,
with an external bus for the synchronization and mas-
ter/slave trigger signals. In both cases the electronics com-
municates with a computer via the USB 2.0 interface for
configuration, control and data retrieval [3].

BTF FITPIX Detector Usage
In order to have a completely arbitrary access to live data

at the maximum frame-rate within the BTF duty cycle, we
have implemented software architecture with a typical pro-
ducer-consumer layout, implementing data caching on
MEMCACHED(MC) server, to allow more than one dif-
ferent consumers at the same time (see below). This has
been possible exploiting all the available programming so-
lutions: starting with the python scripting capability of the
provided software kit, down to low-level programming,
which required some interaction with ADVACAM for a
full exploitation of the Linux libraries. We have a fully

working version of the software for the single FitPIX, the
multidetector-single FitPIX, and more FitPIX devices in
daisy chain. As a by-product, the same software architec-
ture allowed us to have a similar implementation for a
GEMPIX tracker [4], a four sensors detector with a soft-
ware configuration similar to the four stacked layers in a
single FitPIX.

We initially started with profiling a single FitPIX in dif-
ferent proprietary software configurations (bundle PIX-
ETPRO software with Python scripting capabilities) with
external (50Hz) trigger, and single frame acquisition vs.
multiple frame acquisition with acquisition repetitions. As
long as the fired pixel multiplicity is less than 10 (e.g. in a
cosmic run, or in the single-particle BTF beam regime, de-
fined as low data regime), the amount of data stays well
below one MTU. In the following Tab. 1 we summarize the
PIXETPRO software timing profile with a BTF external
trigger at 50Hz: timing responses are reported for both
Windows7 (PIXET WIN) running on a dual core, 3GHz,
8GB RAM PC with MC calls. In the PIXETPRO software,
we explored the possibility to export data via Python script-
ing in the Windows environment (PIXET WIN Py) using
the python-memcached package. In our test conditions, we
were able to cope with the continuous frame rate only in
multiple frame mode readout, but without actually sending
the data on MC (again, via Python scripting).

In those tests, we have also measured a minimum base-
line ~26ms delay before getting the first frame in each new
acquisition due to DAC setup, thus degrading a little the
maximum achievable rate in multi-frame acquisition dur-
ing repetitions, as clearly visible in the values for single vs
multiple frame acquisitions in Tab. 1. Due to the not negli-
gible impact of this delay and in order to accomplish full
rate data retrieval we had then to develop custom software
with runtime extraction of each frame in multi-frame ac-
quisition.

Table 1: Time Profiling PIXET Software with Python Scripting on MC

CODE (OS) MC Trigger Trigger Type Frame time [s] N frames N Rep Acq. Rate [Hz]

PIXET(WIN) Py Y 50 Hz HW_Start 1.00E-05 1000 10 23.26
PIXET(WIN) Py Y 50 Hz HW_Start 1.00E-05 1 1000 24.61
PIXET(WIN) Py N 50 Hz HW_Start 1.00E-05 1000 10 48.48
PIXET(WIN) Py N 50 Hz HW_Start 1.00E-05 1 1000 24.90

PRODUCER SOFTWARE LAYOUT
We achieved the best performance of our code by using

C/C++ compiled code in an Ubuntu 14.04LTS environ-
ment, using the multiple frame acquisition, and by interfac-
ing to a modified API library, in strong collaboration with
the ADVACAM software engineers. For a single FitPIX, a
multiple frame acquisition is managed by a single thread
handling the FitPIX USB interrupt. After each triggered
frame a (intra-thread) function diverts the frame data on the
library internal memory, calling also a call-back function.
This process is automatic in multiple frame acquisition, so

we limit to 1000 frames for each repetition in order to keep
the memory usage below 2GB per FitPIX. The call-back
function is programmable by the user code and it is used
for managing the frame data in the user space. Our choice
was to get directly the frame data at each interrupt: as
measured in Table 3, this dump time to the user memory
(USB_N, where N is the FitPIX device) used by the call-
back function is normally distributed with an average value
of 60μs, so we are perfectly in time for each frame interrupt
(data are for double FitPIX configuration, slightly better
values are obtained for single FitPIX). In order to measure

Proceedings of IBIC2016, Barcelona, Spain WEPG73

Transverse Profile Monitors

ISBN 978-3-95450-177-9

819 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

the performance the custom software, for each of the Fit-
PIX configurations, can also perform the following tasks:

 Set the MC pushing attributes for each FitPIX
 Detect the configuration and setup the active Fit-

PIX, especially in defining the type of triggering
and synchronization for more FitPIX (if any)

 Create one multiple frame acquisition thread for
each active FitPIX. Each thread is sensitive to an in-
ternal interrupt for each new available frame, releas-
ing a fast call-back function in order to download
frame data

 The call-back function extracts each frame in the
multi-frame acquisition, and picks up a nanosecond
timer value for the frame interrupt

 Acquire frame data and header, prepares and com-
press the data payload

 Export processed data on Memcached server
The software starts by command line, where some param-
eters overwrite the configuration file, to maintain the pos-
sibility of simple batch procedure.

Table 2: Time Profiling BTF Compiled Code

Trigger Trigger FitPIX Frame time [s] N frames Rep MC Sparse file Acq. Rate
[Hz]

50 Hz HW_Start 1.00E-05 1000 10 N N 49.97

50 Hz HW_Start 1.00E-05 1 1000 N N 25.03

50 Hz HW_Start 1.00E-05 1000 10 Y N 31.00

50 Hz HW_Start 1.00E-05 1 1000 Y N 24.92

50 Hz HW_Start 1.00E-05 1000 10 Y Y 49.98

50 Hz HW_Start 1.00E-05 1 1000 Y Y 25.21

Auto PXC_TRG_NO 1.00E-05 1000 10 Y Y 41.80

Auto PXC_TRG_NO 1.00E-05 1 1000 Y Y 26.40

Auto PXC_TRG_NO 1.00E-05 1000 10 Y Y 78.64

Auto PXC_TRG_NO 1.00E-05 1 1000 Y Y 38.60

Processed Data Structure
We have optimized the data structure in order to deliver

the minimum necessary information for each frame in the
different use-cases. We have then implemented three pos-
sible data structures:

 array = send all the matrix data (65536 pixel value
data, indirect pixel indexing),

 sparse mode 2dim array = a variable size bi-dimen-
sional array [2,N]. Each slice is the couple of pixel
data: pixel number and pixel value

 ultra sparse mode array = each array element stores
the over threshold pixel number

All of these cases are headed by the following values:
 Case and FitPIX configuration identifier;
 Time tag (resolution 0.1 ms);
 number of fired pixel;
 frame number;

The data types are in dependence of the used FitPIX con-
figuration: for single layer FitPIX (as imaging detector) all
of the values are unsigned short int, with the header ex-
pressed in 6 array elements. For multiple-layers FitPIX we
use unsigned int, especially for low data regime, with five
header elements (still six for compatibility, one being
spare). The FitPIX configuration file and data are tagged
with the serial identifier of the chip, unique id for a multi-
ple FitPIX configuration.

MEMCACHED
MEMCACHED(MC) [5] is an Ethernet based in-

memory key-value store for arbitrary data (strings, ob-
jects). In the BTF network environment, it is installed in
native version on a virtual machine, running Linux (2.6.18-
308.11.1.el5xen quad-cored), with 2GB RAM.

The producer software pushes the processed FitPIX data
in these key-value couples on the MC server, where the key
name has the FitPIX detector unique identifier, protecting
so the source. The producer and the consumer C/C++ codes
use standard MC calls provided by the POSIX, thread-safe
libmemcached [6] library. For the consumer software, writ-
ten in LabVIEW, we use our custom MC API’s. This
choice has been driven by the high reliability obtained in a
heavy data load environments of the DAΦNE Control Sys-
tem, BTF [1, 2] and the very good performance obtained
within the !CHAOS project [7, 8], where this configuration
has been tested via multiple, concurrent producer and con-
sumer calls.

Overall Timing Result Discussion
We profiled the call-back from its interrupt-starting to

the data pushing on MC (Table 3 and 4), for a double Fit-
PIX configuration both for the two data regime. Normally,
we stay within 1ms for low data one, as we need. Table 2
is a summary for the overall acquisition rate of our soft-
ware, where the MC column tells if we are pushing (or Not)
to MEMCACHED and the sparse file column tells if we

WEPG73 Proceedings of IBIC2016, Barcelona, Spain

ISBN 978-3-95450-177-9

820C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Transverse Profile Monitors

push the full matrix (sparse file equal to N) or we perform
shrinking below one MTU per frame. Again is clear the
bottleneck of the MC pushing in full matrix regime, how-
ever still within or close to the BTF Ethernet band-width.
Another important achievement has been the excellent sta-
bility of the producer, running without any problem for
months, while providing data to different (BTF or users)
consumers.

Table 3: Two Detector, Low Data, Timing Profile

Low USB_0 USB_1 MC_0 MC_1
Mean[s] 5.9E-05 5.9E-05 8.62E-04 8.9E-04

Std[s] 1.7E-05 1.7E-05 1.79E-04 1.5E-04

Table 4: Two Detector, Full Matrix, Timing Profile

Full USB_0 USB_1 MC_0 MC_1
Mean[s] 5.8E-05 6.0E-05 2.23E-02 2.33E-02

Std[s] 1.6E-05 1.5E-05 2.09E-03 1.37E-03

OVERVIEW ON CONSUMER SOFTWARE
LabVIEW and C/Root Example Code

We have developed a LabVIEW runtime display of Fit-
PIX data and extracted beam parameters display (such as
3-d transverse image, beam centroid and Gaussian fit data),
working both as shot by shot (instantaneous) and in cumu-
lative mode.

In addition, we have developed a combined C/Root code,
released freely on [9], that fetches MC keys and integrates
ROOT library to save ROOT trees, both in single and in
multiple FitPIX configurations. This software makes a
wide use of the information encapsulated in the data
header, also allowing data integrity checking, e.g. by com-
paring the frame number vs. frame time. This is a simple
comparison but very useful when acquiring multiple Fit-
PIX devices: after getting the MC Key, it gives the chance
to discard aged, non-synchronous data. This code is pro-
vided as an example code for FitPIX integration in users
DAQ software.
Table 5: Two Detector, Low Data Regime, Consumer Tim-
ing

Frame Max Delay
[s]

framerate
[Hz] Rejected

100000 0.010 49.98 0

100000 0.005 49.95 1

100000 0.002 49.95 6

100000 0.001 49.63 486

Data Synchronization with Users DAQ
Thanks to the usage of the MC functions, the integration

in any user code is now just a matter of few plain C code
include and calls. Allowing the BTF users such an easy in-
tegration in any, heterogeneous DAQ software, already
during the first phases of the beam-time, was indeed one of
the major objectives of this work.

From the point of view of consumer (C code) data fetch-
ing, Table 5, we show that the consumer software rejection
function senses a single event jitter delay of 5ms (the min-
imum time-tag difference between two synchronized Fit-
PIX MC keys) after 100000 calls, mainly due to producer
thread time jitter. This guarantees a complete software data
alignment within the user DAQ cycle, even for the data
coming for two FitPIX devices in the BTF typical tracking
setup (shown in Fig. 1). Users can easily implement this
integration after having set NTP synchronization on their
PC, before performing one of these actions: fetching the
MC keys in a separate database for a delayed offline data-
matching; implementing our example code in their own
DAQ cycle, when providing a trigger signal to the FitPIXs;
or, if the DAQ cycle is fast enough, even without any hard-
ware synchronization, just matching the time of the two
data streams (DAQ and FitPIX).

Figure 1: Three FitPIX layout in BTF.

ACKNOWLEDGEMENT
This work is supported by the Horizon 2020 project

AIDA-2020, GA no. 654168.
We would like to thank Daniel Tureček and Pavel

Soukup, ADVACAM, for the fruitful experience sharing in
low-level libraries and hardware development. We are
grateful also, among our users, especially to Francesco
Renga and Giovanni Tassielli: their requirements are con-
stantly pushing our facility for improvement.

REFERENCES
[1] L.G. Foggetta, B. Buonomo, and P. Valente, "Evolution of

Diagnostics and Services of the DAÎ¦NE Beam Test Facil-
ity", in Proc. 6th International Particle Accelerator Con-
ference, Richmond, VA, USA, 2015, paper MOPHA049,
pp. 904-906.

[2] P. Valente et al, "Frascati Beam-Test Facility (BTF) High
Resolution Beam Spot Diagnostics”, in International Beam
Instrumentation Conference (IBIC16), Barcelona, Spain,
2016, paper MOPG65, this conference.

[3] V. Kraus et al, “FITPix — fast interface for Timepix pixel
detectors”, Journal of Instrumentation, Volume 6, January
2011.

[4] F.Murtas et al, “Applications of triple GEM detectors be-
yond particle and nuclear physics”, Journal of Instrumenta-
tion, Volume 9, January 2014.

[5] https://memcached.org/
[6] http://libmemcached.org/
[7] http://chaos.infn.it/
[8] A. Stecchi et al., “!CHAOS Status and Evolution”, in Proc.

6th International Particle Accelerator Conference, Rich-
mond, VA, USA, 2015, paper MOPHA046, pp. 894-896

[9] https://svn.lnf.infn.it/filedetails.php?repname=btf_sci-
ence&path=%2Ftrunk%2FMC_btf%2FMC_read_tracker%
2FreadMC_tracker_Example.cc

Proceedings of IBIC2016, Barcelona, Spain WEPG73

Transverse Profile Monitors

ISBN 978-3-95450-177-9

821 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

