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Abstract

Knowledge of a vacuum chamber impedance is neces-

sary to estimate limitations of particle beam intensity. For

new accelerator projects, minimization of the impedance

is a mandatory requirement. The impedance budgets are

computed during the machine design. Beam-based mea-

surements of the impedance are usually carried out at the

beginning of the machine commissioning. Comparisons of

the impedance computations and measurements often show

significant discrepancies, a factor of two or even more is not

something unusual. Since the accuracy of impedance com-

putations is not sufficient, the beam-based measurements are

important to estimate the machine impedance and to predict

stability conditions for high-intensity particle beams.

WAKEFIELDS AND IMPEDANCES

The beam intensity in storage rings is usually limited

by its interaction with electromagnetic fields induced in

a vacuum chamber by the beam itself (wakefields). The

beam-wakefield interaction is described in terms of wake

functions defined as normalized integrals of the Lorentz

forces that act on a test particle moving behind a leading

particle which excites the wakefields. The velocity of both

particles is v (|v| = c). To analyze the beam stability in

most practical cases, it is enough to consider only monopole

longitudinal W‖ and dipole transverse W⊥ wake functions.

The longitudinal wake function is [1]:

W‖ (τ) = −
1

q

∫ ∞

−∞
Ez (t, τ) dt , (1)

where q is the charge of leading particle, τ = s/c, s is the

distance between the leading and the trailing particles, c is

the speed of light. The transverse wake function is defined

similarly to the longitudinal one but the integral is normal-

ized by the dipole moment qr of the leading particle; W⊥ is

a vector with horizontal and vertical components:

W⊥(τ) = −
1

q r

∫ ∞

−∞
[E(t, τ) + v ×B(t, τ)]⊥ dt . (2)

The longitudinal and transverse wake functions are related

to each other by the Panofsky-Venzel theorem [1, 2].

For a beam with arbitrary charge distribution, its interac-

tion with wakefields is described by the wake potential:

V (τ) =

∫ ∞

0

W (t)λ(τ − t)dt , (3)

where λ(t) is the longitudinal charge density normalized as
∫ ∞
−∞ λ(t)dt = 1 .
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In the frequency domain, each part of the vacuum chamber

is represented by a frequency-dependent longitudinal Z ‖ and

transverse Z⊥ impedances defined as Fourier transforms of

the corresponding wake functions. For any vacuum chamber

component, the impedance can be approximated by a set

of equivalent resonators plus the resistive-wall impedance.

The beam interaction with the narrowband impedance and

with the broadband one can be analyzed separately. We can

assert that the narrowband impedance leads to the bunch-by-

bunch interaction and can result in multi-bunch instabilities,

whereas the broadband impedance leads to the intra-bunch

particle interaction and can cause single-bunch instabilities.

Computation of the impedance budget is an essential part

of accelerator design. The impedance of a vacuum cham-

ber is computed by element-wise wakefield simulations us-

ing 3D finite-difference simulation codes solving Maxwell

equations with the boundary conditions determined by the

chamber geometry. The fields are excited by a bunched

beam with pre-defined charge distribution. The code output

is a wake potential (3) and the impedance is calculated as

Z (ω) = Ṽ (ω)/λ̃(ω), where Ṽ and λ̃ are the Fourier trans-

forms of the wake potential and of the longitudinal charge

density, respectively. So the bandwidth of the impedance

derived from the simulated wake potential is limited by the

bunch spectrum width which is inversely proportional to the

bunch length defined for the simulation. The mesh size of

the solver is very important, it should be small enough to

get reliable results for a given bunch spectrum. For a typi-

cal bunch length of few millimeters, full 3D simulation of

wakefields in a big and complex structure is quite difficult.

Beam-based measurement of the impedance is an impor-

tant part of a machine commissioning. Comparisons of

impedance computations and beam-based measurements

show significant discrepancies for many machines, a fac-

tor of two or even more. There are many publications de-

scribing thorough calculations of impedance budgets and

finally the total impedance is multiplied by a "safety fac-

tor" of two. Some accelerator facilities have not achieved

their design beam currents because the collective effects

nave not been predicted correctly at the design stage. Since

the accuracy of impedance computations is not sufficient,

the beam-based measurements are important to estimate the

machine impedance and to predict stability conditions for

high-intensity particle beams.

LONGITUDINAL BROADBAND

IMPEDANCE

For the longitudinal broadband impedance, the measur-

able single-bunch effects are: current-dependent bunch

lengthening, synchronous phase shift, and energy spread
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growth due to microwave instability. These effects are de-

pendent on integral parameters combining the impedance

and the bunch power spectrum: the effective impedance and

the loss factor. If the bunch length is much shorter than

the ring average radius, the normalized effective impedance

(Z ‖/n)eff is defined as

(

Z ‖

n

)

eff

=

∫ ∞
−∞ Z ‖ (ω)

ω0

ω
h(ω)dω

∫ ∞
−∞ h(ω)dω

, (4)

where Z ‖ (ω) is the frequency-dependent longitudinal

impedance, n = ω/ω0 is the revolution harmonic number,

ω0 = 2π f0 is the revolution frequency, h(ω) = λ̃(ω)λ̃∗(ω)

is the bunch power spectrum, λ̃(ω) is the Fourier transform

of the longitudinal charge density λ(t). For a Gaussian

bunch, h(ω) = e−ω
2σ2

t , where σt = σz/c, σz is the bunch

length. If the low-frequency longitudinal impedance is as-

sumed to be inductive, the normalized impedance Z ‖/n is

frequency-independent.

The loss factor k ‖ determines the coherent loss

∆E = k ‖q
2 of the beam energy caused by the beam-

impedance interaction; q is the bunch charge. The loss

factor can be expressed in terms of the wake potential V‖ or

of the impedance Z ‖ :

k ‖ =

∫ ∞

−∞
V‖ (t) λ(t)dt =

1

2π

∫ ∞

−∞
Z ‖ (ω) h(ω)dω . (5)

If the bunch is not very short (few millimeters is a typ-

ical bunch length for electron/positron storage rings), the

measurable single-bunch effects resulted from the beam in-

teraction with a complex impedance produced by computer

simulations can be described with reasonable accuracy using

a simple broadband resonator model. For longer bunches,

even the simplest inductive model is acceptable.

The longitudinal broadband impedance can be estimated

by direct measurement of the bunch profile as a function

of beam intensity using a streak-camera or a dissector tube,

or by indirect measurement of the bunch length using the

bunch spectrum width from a button-type pickup electrode.

Interaction of a beam with a broadband impedance de-

forms the longitudinal bunch profile λ(t). A zero-intensity

bunch profile λ0(t) is Gaussian. Below the microwave in-

stability threshold, λ(t) as a function of the bunch current

Ib = q f0 can be described by the Haissinski equation [3]:

λ(t) = Kλ0(t) exp*
,
−
αIb

ω2
sσ

2
0
E/e

∫ t

−∞
S(t + τ)λ(τ)dτ+

-
,

(6)

where S(t) =
∫ t

0
W‖ (τ)dτ , α is the momentum compaction,

ωs is the synchrotron frequency, E is the beam energy.

The normalizing factor K is determined by the condition
∫ ∞
−∞ λ(t)dt = 1. The Haissinski equation can be solved nu-

merically for a certain impedance model (e.g. broadband

resonator) and the model parameters can be find by fitting

the measured bunch profile with the equation solution [4].

The intensity-dependent bunch lengthening (α > 0) can be

approximately described by a cubic equation [5]:

(

σt

σt0

)3

−
σt

σt0

=

Ib α√
2π ν2s (ω0σt0)3 E/e

Im

(

Z ‖

n

)

eff

, (7)

where νs = ωs/ω0 is the synchrotron tune, σt0 is the r.m.s.

bunch length at zero intensity.

Above the microwave instability threshold, the longi-

tudinal beam dynamics is characterized by the intensity-

dependent energy spread growth and a turbulent bunch

lengthening. The relative energy spread δ ≡ σE/E can be

estimated from a measured r.m.s. horizontal size σx de-

termined by the combination of betatron and synchrotron

contributions: σ2
x = βxεx + (ηxδ)

2, where βx is the beta

function, εx is the emittance, ηx is the dispersion. The trans-

verse beam size is usually measured by a visible light monitor

or a pin-hole X-ray camera located in a dispersive section.

The beam dynamics above the threshold is very complex,

and comprehensive numerical simulations are needed to fit

the measured intensity-dependent energy spread with the

model impedance.

Note, it is practically impossible to find the microwave

instability threshold from the measured bunch lengthening

although it is clearly visible on a graph of the measured

intensity-dependent energy spread [6], this is also confirmed

by numerical simulations [7]. Thus, formula (7) could be

useful to fit the bunch lengthening even if the beam current

exceeds the microwave instability threshold.

The loss factor can be estimated from the measured

intensity-dependent shift ∆φs of the beam synchronous

phase. This phase shift is caused by the coherent energy loss,

which is compensated in the accelerating RF cavities every

beam turn, as well as the energy loss caused by synchrotron

radiation. The formula of synchronous phase shift is derived

from the energy balance of the beam:

∆φs =
Ibk ‖

f0VRF cos φs0

, (8)

where VRF is the RF voltage, φs0 is the synchronous phase

at zero current. The loss factor k ‖ depends on the bunch

length growing with the beam current, so the phase shift

as a function of the beam current is non-linear. For a low-

current beam, we can neglect the bunch lengthening and,

with this approximation, the phase shift ∆φs can be assumed

proportional to the zero-current loss factor.

The current-dependent shift of synchronous phase can

be measured directly using synchrotron light diagnostics

(streak-camera, dissector tube) or RF system diagnostics. To

reduce the systematic error resulted from the drift or jitter of

the diagnostic instruments, the two-bunch technique is use-

ful. The longitudinal profiles of two bunches are measured

simultaneously, one bunch has variable intensity, whereas

the other bunch with a fixed intensity is the reference, so the

systematic error caused by the instrument drift is eliminated.

The other technique is based on measurement of the closed

orbit distortion caused by the coherent energy loss [8]. If

the dispersion and its derivative is zero in the accelerating
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RF cavities, the orbit deviation can be assumed proportional

to the dispersion η(s). The loss factor k ‖ can be estimated

by measuring the orbit distortion ∆x(s) as a function of the

beam current variation ∆Ib [9]:

k ‖ =
f0

∆Ib

E

e

∆x(s)

η(s)
. (9)

If the RF cavities are located in several places, this method

can be used to measure the longitudinal loss factor of a sec-

tion between the cavities. High-precision beam position

monitors (BPMs) are now a standard component of beam di-

agnostics, so the beam orbit can be measured precisely [10].

TRANSVERSE BROADBAND

IMPEDANCE

For the transverse broadband impedance, the measurable

effects are current-dependent shift of betatron frequencies

and rise/damping time of the chromatic head-tail effect. Sim-

ilar to the longitudinal case, these effects are dependent on

integral parameters combining the impedance and the bunch

spectrum: transverse effective impedance Z⊥eff and dipole

kick factor k⊥. If the bunch length is much shorter than the

ring average radius, the effective impedance is defined as

Z⊥eff =

∫ ∞
−∞ Z⊥(ω)h(ω − ωξ )dω

∫ ∞
−∞ h(ω − ωξ )dω

, (10)

where Z⊥(ω) is the frequency-dependent transverse

impedance, ωξ = ξω0/α, ξ = dνβ/(dE/E) is the chro-

maticity, ωβ = νβω0 is the betatron frequency.

The transverse dipole kick ∆x ′ caused by the beam-

impedance interaction is

∆x ′ =
q

E/e
k⊥x , (11)

where x is the beam transverse offset, k⊥ is the kick factor

k⊥ =

∫ ∞

−∞
V⊥(t) λ(t)dt =

1

2π

∫ ∞

−∞
Z⊥(ω) h(ω)dω . (12)

If the bunch is not very short, the transverse single-bunch ef-

fects can be analyzed using the simplified impedance models

such as broadband resonator or pure inductive impedance

for longer bunches, similarly to the longitudinal impedance.

Interaction of a bunched beam with the broadband

impedance results in the transverse mode coupling [11]. If

the chromaticity is zero, a fast head-tail instability occurs

above the threshold beam current when the coherent (0-th)

mode is coupled with the lowest (−1-st) head-tail mode. If

the chromaticity is non-zero, the coherent mode damps upon

the positive chromaticity and becomes unstable when the lat-

ter is negative, and the higher-order head-tail modes behave

oppositely. The rise/damping rates decrease rapidly with the

mode number, so only few lowest modes are essential and

the eigenmode analysis is efficient. The complex frequency

Ωl of l-th head-tail mode can be found solving the eigen-

value problem [11], ReΩl is the intensity-dependent shift of

the mode frequency, ImΩl is the rise/damping rate.

For the coherent mode, the intensity-dependent tune shift

∆νβ and the chromatic damping rate τ−1
ξ

can be obtained by

spectral analysis of beam oscillations measured by a turn-by-

turn BPM. The impedance model parameters are estimated

by fitting the measured data with a solution of the eigenvalue

problem [4]. If the frequency shift of 0-th mode is small

compared with the synchrotron frequency ωs , the linear

approximations [11] for ∆νβ and τ−1
ξ

are applicable:

∆νβ = −
Ib

2ω0E/e

∑

i

βi k⊥i , τ
−1
ξ =

Ibξω0

2παE/e

∑

i

βiReZ⊥i .

(13)

Here the summation is over the whole ring, βi is the ampli-

tude betatron function at the location of i-th local impedance.

LOCAL IMPEDANCE

A local transverse impedance acts on the beam as a defo-

cusing quadrupole, strength of which depends on the beam

intensity. The wakefield kick (11) is proportional to the beam

charge and its transverse offset at the impedance location.

Measurement of the intensity-dependent betatron phase

advance µ(s) along the ring allows determining the contri-

butions of different sections of the vacuum chamber into the

coherent shift of betatron tune. In such a way, one can obtain

the azimuthal distribution of the transverse impedance [9].

∆µ(s) = −
∆Ip

8πCE/e

∫ s

0

β(ζ ) ImZ⊥(ζ ) dζ , (14)

where Ip is the peak bunch current (Ip =
√

2π
ω0σt

Ib for a Gaus-

sian bunch), C is the ring circumference. Accuracy of this

technique is determined by the turn-by-turn resolution of

the BPMs, the signals of which are used to calculate the

betatron phase. Typically, the intensity-dependent change

of the BPM-to-BPM phase advance is rather small, so this

technique requires very good turn-by-turn BPM resolution.

The orbit bump method [12,13] is more sensitive because

the BPMs are used in the narrowband orbit mode rather

than in the broadband turn-by-turn mode and the noise is

much smaller. This method is based on the measurement of

a wave-like orbit distortion created by the local wakefield

kick (11). If a local orbit bump is created at the impedance

location s0 , the intensity-dependent orbit distortion is:

∆x(s) =
∆q

E/e
k⊥x0

√

β(s) β(s0)

2 sin πνβ
cos

(

|µ(s) − µ(s0) | − πνβ
)

,

(15)

where x0 is the orbit bump height. This wave-like orbit

distortion can be measured using BPMs, and the wave am-

plitude is proportional to the kick factor at the bump location.

For better accuracy, the systematic error caused by intensity-

dependent behavior of the BPM electronics is also measured

and then subtracted.

Rapid evolution of BPM electronics allows us to improve

much the method accuracy. Now we can measure the orbit

distortion of the order of several micrometers [14] compared

to the 100-micrometer orbit distortion measured at the very
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beginning of the bump method development [12]. Further

improvement looks problematic because of the systematic

errors caused by hysteresis effects of orbit correctors and by

the orbit drifts during the measurement.

A technique, which significantly improves the accuracy

of the bump method has been recently developed and

tested [15]. This technique is based on an AC orbit bump

created by sine-wave excitation of four fast correctors adja-

cent to the section, impedance of which is measured. The

narrowband sine-wave signals provide better signal-to-noise

ratio. Use of fast correctors eliminates the systematic error

caused by hysteresis. The error caused by orbit drifts is also

suppressed because the measured signal is not affected by

the orbit motion outside the excitation frequency range. The

resolution is good enough to measure the orbit distortion of

the order of 0.1 µm, which is an order of magnitude smaller

than the sensitivity of the conventional bump method.

To measure the impedance of a vacuum chamber compo-

nent with variable geometry such as beam scrapers or in-

vacuum undulators, both orbit and turn-by-turn techniques

are effective [10,16]. Using the reference bunch technique

and precise BPMs, a contribution of the movable element to

the total betatron tune shift can be accurately measured.

TRANSVERSE NARROWBAND

IMPEDANCE

The transverse coupled-bunch instability (CBI) is driven

by long-range wakefields (narrowband impedance), usu-

ally by trapped modes in cavity-like strictures in the vac-

uum chamber and by resistive-wall impedance. For M

equally-spaced rigid bunches, the complex frequency shift

∆Ω = Ω − ωβ of the n-th CBI mode is [11]:

∆Ωn = −
i

4π

ω0 β

E/e
MIb

∞
∑

p=−∞
Z⊥

(

(pM + n)ω0 + ωβ

)

,

(16)

The frequency shift and rise/damping rate are equal to Re∆Ω

and Im∆Ω, respectively.

Using a transverse multi-bunch feedback system, we can

individually excite each CBI mode, then stop the excitation

and measure free oscillations (damped or anti-damped) [17].

The model of narrowband transverse impedance includes

the resistive-wall impedance [18] and a set of narrowband

resonators representing the trapped modes. The parameters

of the impedance model are estimated by fitting the measured

rise/damping rates of each mode with the values calculated

using formula (16). Comparison of the model resonators

fitting the measured data with the impedance computed by

wakefield simulations is helpful to identify the sources of

the resonances.

CONCLUSION

The beam-based measurements are important to estimate

the machine impedance and to predict stability conditions

for a high-intensity particle beam because the accuracy of

impedance budget computations is not sufficient. Compar-

isons of the impedance computations and beam-based mea-

surements show significant discrepancies for many machines,

a factor of two or even more. Integral parameters combining

the impedance and the bunch spectrum can be measured:

effective impedance, longitudinal loss factor and transverse

kick factor. For the longitudinal broadband impedance, the

measurable effects are: bunch lengthening, synchronous

phase shift, dispersive orbit distortion, and energy spread

growth above the microwave instability threshold. These

effects can be measured using streak cameras, dissector

tubes, RF system diagnostics, BPMs, pin-hole X-ray cameras

and synchrotron light monitors. For the transverse broad-

band impedance, the measurable effects are: coherent beta-

tron tune shift, chromatic head-tail damping, and intensity-

dependent orbit distortion. To measure these effects, turn-by-

turn BPMs are used. The transverse narrowband impedance

can be analyzed using the modal rise/damping times of the

transverse coupled-bunch instability measured by bunch-by-

bunch feedback systems.

REFERENCES

[1] B.W. Zotter, S.A. Kheifets, Impedances and Wakes in High-

Energy Particle Accelerato. World Scientific, 1998.

[2] W.K.H. Panofsky, W.A. Wenzel, et al., Rev. Sci. Instrum., vol.

27 (1956), p. 967.

[3] J. Haissinski, Nuovo Cimento vol. 18B, No. 1 (1973).

[4] V. Smaluk, I. Martin, R. Fielder, R. Bartolini, Phys. Rev. ST
Accel. Beams. Vol. 18, 064401 (2015).

[5] B. Zotter, Potential-Well Bunch Lengthening, CERN SPS/81-

14 (DI). Geneva, 1981.

[6] Y.-C. Chae et al, Measurement of the Longitudinal Microwave

Instability in the APS Storage Ring, in Proc. of PAC’01.

Chicago, 2001.

[7] A. Blednykh et al, A Numerical Study of the Microwave In-

stability at APS, in Proc. of NA-PAC’16. Chicago, 2001.

[8] J.P. Koutchouk, Trajectory and closed orbit correction,

CERN LEP-TH/89-2. Geneva, 1989.

[9] D. Brandt et al, Measurement of Impedance Distribution and

Instability Threshold in LEP, in Proc. of PAC’95. Dallas,

1995, p. 570.

[10] E. Karantzoulis, V. Smaluk, L. Tosi, Phys. Rev. ST Accel.

Beams. Vol. 6, 030703 (2003).

[11] A. Chao, Physics of Collective Beam Instabilities. Wiley,

1993.

[12] V. Kiselev, V. Smaluk, Experimental Study of Impedances

and Instabilities at the VEPP-4M Storage Ring, in Proc. of

EPAC’98. Stockholm, 1998.

[13] V. Kiselev, V. Smaluk, Nucl. Instr. and Meth. A 525 (2004),

pp. 433–438.

[14] V. Smaluk et al, Phys. Rev. ST Accel. Beams. Vol. 17, 074402

(2014).

[15] V. Smaluk, X. Yang, A. Blednykh, Y. Tian, K. Ha, Nucl. Instr.

and Meth. A 871 (2017) pp. 59–62.

[16] B. Podobedov et al, Novel Accelerator Physics Measurements

Enabled by NSLS-II RF BPM Receivers, in Proc. of IBIC’16.

Barcelona, 2016.

[17] R. Bartolini et al, Analysis of Multi-bunch Instabilities at the

Diamond Storage Ring, in Proc. of IPAC’16. Busan, 2016.

[18] R.L. Gluckstern, J. van Zeijts, B. Zotter, Phys. Rev. E vol. 47

No. 1 (1993), pp. 656–663.

6th International Beam Instrumentation Conference IBIC2017, Grand Rapids, MI, USA JACoW Publishing
ISBN: 978-3-95450-192-2 doi:10.18429/JACoW-IBIC2017-MO3AB2

7 Machine Parameter Measurements
MO3AB2

31

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


