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Abstract

The development of future free electron lasers (FELs) re-

quires reliable time-resolved measurement of variable ultra-

short electron-bunchs characteristics. A possible technique

is to streak the bunch in the transverse direction by means

of time-dependent external fields. In this paper we explore

the possible use of self-generated electromagnetic fields. A

passive deflector, consisting of a dielectric-lined waveguide,

is used to produce wakefields that impart a time-dependent

transverse kick to the relativistic electron bunch passing off-

axis. We investigate the technique and its performances and

explore its possible application at the Fermilab Accelerator

Science and Technology (FAST) facility.

INTRODUCTION

Modern physics accelerators sever a variety of science

from high-energy physics and nuclear physics to radiation

sources and electron microscopes. Conventional methods

used in the preparation of beams for accelerator application

often cannot keep pace with the new demands, thus, new

approaches continue to emerge. Techniques to tailor the

electron beam phase space distribution by means of exter-

nal and internal fields have come to play an increasingly

important role in linear accelerators over the last decade.

Precise control of beam phase space distribution is foreseen

for beam-driven advanced acceleration techniques and for

novel radiation sources including free-electron lasers and

THz radiators. A wide of techniques has been developed to

utilize the fields to influence the beam distribution. One of

the manipulations operates within one degree of freedom,

e.g., those based on the use of external and internal fields to

control the distribution in one of three 2D phase-spce planes:

(x − px), (y − py), (z − pz).

In this paper, the self-generated wakfields, as the internal

fields, is used as a tool to provide the transverse kick on

the beam so as to introduce a correlation between time and

the transverse beam distribution. The first part of this paper

is to review the transverse equations of motion in the pre-

sence of wakefield and explore the use of a passive deflector

to provide time-dependent deflecting kick to a relativistic

electron bunch. Such a capability could enable the deve-

lopment of new passive (and cheap) beam diagnostics [1].

The passive deflector does not need to be powered and it
is easier to be manufactured compared to a rf transverse
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deflecting structure, thus, resulting in a considerable cost

saving. The passive deflector is self-synchronized with the

beam by design, being the wakefield excited by the bunch

itself when it travels through a dielectric tube. Thus, we

could use it to perform time-resolved measurements of a

relativistic electron bunch based on the self-transverse wake-

field interaction of the beam itself passing off-axis through

a dielectric-lined tube and reconstruct the beam profile from

the resulting image of the streaked beam on the downstream

profile monitor. The second part of this paper is to explore

some possible ways to reconstruct the profile of the beam as

a way of beam diagnostics.

BASIC EQUATIONS

We first introduce the coordinate system under conside-

ration and take an electron propagating along an accelera-

tor beam line with applied external fields. The transverse

coordinates are x and y while the longitudinal laboratory

coordinate along the straight beamline is z. In order to quan-

tify the bunch dynamics, it is often convenient to introduced

ζ(t) ≡ z(t) − c
∫ t

0
β(t ′)dt ′ where ζ represents the axial posi-

tion of an electron with respect to the bunch centre (ζ = 0)

at the time t. Since the beam dynamics also involves the

momenta we introduce pi the conjugate momenta associa-

ted to the spatial coordinates i = x, y, ζ and note that for a

bunch pζ ≫ (px, py). For convenience we also introduce

the angular divergence as x ′ ≡
px

pz
and y

′ ≡
py

pz
. Finally we

introduce the relative momentum spread as δ ≡
p

〈p〉
where

p2
= p2

x + p2
y + p2

z .

In order to describe the dynamics of a bunch in presence of

transverse wakefield it is often useful to describe the bunch

as an ensemble of axial slices. The transverse position of

these slices at a given position z along the beamline is a

function of ζ and parameterized as xxx(ζ, z) where the vector

xxx ≡ (x, y). Considering the case of a transverse wakefield gi-

ving rise to the transverse Green’s function w⊥(ζ) along, e.g.,

the x direction we can write the corresponding transverse

horizontal force as

Fx(ζ, z) = e2

∫ ∞

ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ
′)x(ζ ′, z)dζ ′ (1)

where e is the electronic charge. Consequently the trans-

verse equation of motion can be written as [2, 3]

d

dz

[

γ(z)
d

dz
x(ζ, z)

]

+ K2γ(z)x(ζ, z) =

r0

∫ ∞

ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ
′)x(ζ ′, z)dζ ′

(2)
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where r0 ≡ e
mc2 is the classical radius of the electron, γ ≡

E
mc2 is the relativistic Lorentz factor (here E2 ≡ p2c2

+m2c4

is the total energy), and K describes external focusing fields.

In a drift space (K = 0) and assuming the beam energy

remains unchanged γ(s) = γ and
dγ

dz
= 0, the latter equation

simplifies to

d2x(ζ, z)

dz2
=

r0

γ

∫ ∞

ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ
′)x(ζ ′, z)dζ ′. (3)

Taking the wakefield to be constantly applied over a length

L the previous equation can be integrated to yield

x ′(ζ, z) =
dx(ζ, z)

dz

=

Lr0

γ

∫ ∞

ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ
′)x(ζ ′, z)dζ ′.

(4)

The most-left equality is valid under the ultra-relativistic

approximation γ ≫ 1. Assuming that the slice position does

not change during the interaction but only its divergence is

affected (this is the so-called “impulse approximation") we

can further simplify the previous equation into

x ′(ζ, z) =
dx(ζ, z)

dz

= x(ζ, z)
Lr0

γ

∫ ∞

ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ
′)dζ ′.

(5)

This equation is the basis of transverse-wakefield calcula-

tion: knowing the longitudinal charge distribution ρ(ζ) and

the transverse Green’s function describing the electromag-

netic wake, one can infer the transverse displacement of

longitudinal slices.

BEAM DIAGNOSTICS

We now consider the possible use of transverse wake

to streak the beam aka to what is commonly done with a
transverse-deflecting cavity. This possibility was explored in
Ref. [1] where it was pointed out that one could in principle

reconstruct the longitudinal distribution and some prelimi-

nary results were presented. In this Section we first remind

the principle of operation of an active transverse-deflecting

cavity and then derive the equation for a passive deflector.

We finally explore various ways of retrieving the longitudinal

charge distribution.

Analysis of the Active Transverse Deflector

A common time-domain diagnostic method to infer the

duration of sub-picosecond employs a transverse-deflecting

resonant radiofrequency (RF) cavity [4]. The cavity usually

operates on the TM110 mode and therefore sustains a trans-

verse time-dependent magnetic field B. As the bunch travels

through the cavity [5]. Resulting in a transverse kick (e.g.

in the x direction) of the form

x ′(ζ, z) ≃
Lr0E0

γ
sin(kζ + ϕ), (6)

where L is now the length of the cavity, E0 the peak electric

field provided by the cavity and ϕ an arbitrary phase shift we

henceforth take to be ϕ = 0, and k = 2π
λr f

is the wavevector

associated to the wave supported by the RF cavity. In practice

the bunch length σζ is such that σζ ≪ λr f so that the

sin() function can be approximated by its first-order Taylor

expansion. In such a case we have

x ′(ζ, z) =
Lr0E0

γ
kζ ≡ κζ, (7)

and the kick is linearly dependent on the bunch longitudinal

coordinate. In the previous equation κ is referred to as the

normalized kicking strength. A typical experimental setup

for measuring the longitudinal bunch distribution consists

in recoding the transverse distribution fx(x) downstream

the deflecting cavity. To analyze such a measurement we

recall that the transverse phase-space coordinate xxx ≡ (x, x ′)

downstream of a beamline with transfer matrix R is given by

xxx = Rxxx0 where x0 is the initial coordinate upstream of the

beamline. Taking R to be the transfer matrix from the cavity

exit to the observation point we can write for the position of

one electron

x = R11x0 + R12x ′
0, (8)

where x ′
0
= κζ + x ′

0,−
with x ′

0,−
understood as the electron’s

initial angle prior to receiving the deflecting kick. Under

such an assumption the horizontal position of an electron at

the observation point reduces to

x = R11x0 + R12(κζ + x ′
0,−).

= R11x0 + R12x ′
0,− + R12κζ ≡ xβ + R12κζ, (9)

where xβ is position due to the betatronic motion. The latter

equation can be rewritten as

x = xβ + xζ, (10)

which simplifies to x = xζ when the deflector is turned off.

Introduction the probability distribution for xβ and xζ to

be respectively fβ(xβ) and fζ (xζ ) and further considering

the variables to be independent, the probability distribution

associated to x is given by the convolution

f (x) =

∫

+∞

−∞

fβ(xβ) fζ (x − xβ)dxβ . (11)

The longitudinal distribution is related to fζ (x) via the

charge conservation relation fζ (x)dx = ρ(ζ)dζ that is

ρ(ζ) = |R12 κ| fζ (R12 κζ). Therefore we need to extract the
function fζ (x) from Eq. (11). We note that f (x) and fβ can be

directly measured by recording the distribution at the

observation point respectively with and without powering

the deflecting cavity. One can then performed a deconvo-

lution [6] to retrieve f (x). Another possibility is to ensure

the beta function at the observation point is very small so
that fβ(xβ) ≃ δ(xβ) [where δ() is the Dirac’s function] con-

sequently simplifying Eq. (11) to f (x) ≃ fζ (x).
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Equations for a Passive Deflector

Given the description of the active deflection scheme, we

can now modify the previous equations to apply them to
the passive-deflection technique. Equation (9) is especially

modified as

x = xβ + R12x ′
0(ζ), (12)

where x
0
′ (ζ) ≡ x ′(ζ, z = 0) with z = 0 corresponding to 

the position where the kick is applied (i.e. the center of

the deflecting structure in the impulse approximation); see

Eq. (5). We point out that xζ ≡ R12 x0
′ (ζ) is now a nonlinear 

function of ζ .
Also, using the charge conservation relation fζ (x)dx =

ρ(ζ)dζ , that is

ρ(ζ) = |R12

dx ′
0
(ζ)

dζ
| fζ (x) (13)

Here we can get the derivative
dx′

0
(ζ )

dζ
from Eq. ( ). The

wake function then can be obtained from Eq. [7], here the

transverse wake function is the numerical result along ζ
when the beam travels through the waveguide with offside

r0 = b. Here, the inner radius of the wave guide is b =
4.50 × 10−4 m and outer radius a = 5.50 × 10−4 m and the 
dielectric constant of the medium is ǫ = 4.41. The result is
shown in Fig. 1.
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Figure 1: Transverse wake function along ζ .

Thus, through substituting the already known wake

function in Eq. (5), we can obtain the derivative dx
′
0
(ζ) 

. Afterdζ

we extract fζ (x) from Eq. (11), the the rest of the problem

is to solve the self-consistent equation for the probability

distribution ρ(ζ) along ζ . Since we can measure the proba-

bility distribution on the monitor, we can directly obtain the

values of f (x) and the probability distribution fβ(x) when

the deflecting is turned off in Eq. (11). Then we can use the

deconvolution method to extract the longitudinal distribution

fζ (x). Finally, we can get the longitudinal distribution ρ(ζ)
through Eq. (13).

The algorithm implemented to to retrieved the longitudi-

nal bunch distribution ρ(ζ) given the observed distribution

fζ (x) consists of an iterative method summarized in the

pseudo code 1. The algorithm we selected is a simple adap-

tive loop commonly used in feedback control systems. Speci-

fically, we first make a guess of the longitudinal charge den-

sity ρ(ζ) and compute the corresponding projected function

fζ (x) from which the incoming charge density is recove-

red. The adaptive loop consists in readjusting the initial

longitudinal charge density given as detailed in the pseudo

code 1.

Algorithm 1 Longitudinal charge distribution retrieval

1: define G ⊲ gain for the adaptive loop

2: read f m
ζ
(x) ⊲ measured beam profile after

deconvolution

3: initialize ρ0(ζ) ⊲ initial (guessed) charge distribution

4: for i ∈ [0, N] do

5: x(ζ)=TransWake[Green, ρi(ζ)] ⊲ compute

deflecting kick for a given Green’s function

6: fζ (x)=Streak[ρi(ζ), x(ζ)] ⊲ evaluate streaked

profile

7: ρe
i
(ζ) = fζ (x) × | dx

dζ
| ⊲ estimated charge

distribution from streaked profile

8: ρi+1(ζ) = ρi + G × (ρe
i
(ζ) − ρi) ⊲ successive

approximation

9: ǫi =
∑

x[|(| fζ (x) − f m
ζ
(x))]

10: end for

11: plot ρN (ζ)

The algorithm is proved to be practical by using a genera-

ted super gaussian longitudinal distribution as in Fig. 2. The

red line is the generated initial distribution and the blue dot

line is the reconstructed distribution after enough times of

iterations. We can see they fit very well.

Figure 2: Comparison between the initial longitudinal dis-

tribution and the reconstructed distribution

To verify the validation of the method mentioned above,

we firstly produce a beam bunch by the ELEGANT [8]. To

better verify the this, the beam bunch is designed with some

periodic peaks in the direction of x and y. The total charge of

5
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the beam is 1×10−7C with total particle number of 100, 000. 
The undeflected beam is shown as in Fig. 3:

Figure 3: Undeflected beam along t in the longitudinal di-

rection.

After the beam passes through the waveguide with an

offside, the beam is deflected by the self-generated wake

field, and the shape changes as in Fig. 4 and Fig. 5:

Figure 4: Deflected beam along t in the longitudinal di-

rection.

Figure 5: Deflected beam projected on the monitor x − y

direction.

We then test the proposed method to reconstruct the lon-

gitudinal profile of the beam bunch, using the density dis-

tribution of the deflected beam and undeflected beam along

x on the x − y monitor. We can see that the result basically

fits well with Fig. 3.

Figure 6: Normalized density along binned t .

CONCLUSION

Thus, in this paper, we proved the deconvolution and

iteration method to extract the longitudinal profile of a ultra-

short beam in simulation. The result basically agrees with

the measurement of the simulation. Thus, the result of the

time-resolved measurement based on the passive deflector

of a relativistic beam is valid. Also, other methods need to

be explored and tested, and further experiment should be

verified.
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