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Abstract 

Calibration of capacitively-coupled beam position mon-
itors (BPMs) for use in non-relativistic beam lines has 
proven to be challenging. This is due to the fields generated 
by the beam being non-transverse causing the measured 
signals to depend on the measured frequency and the beam 
velocity [1]. In order to correct for these effects, calibration 
of BPMs may be done with an apparatus that is capable of 
simulating the fields generated by non-relativistic beams 
for several beam velocities. One possible method of simu-
lating these beams is to use a helical pulse line. This paper 
studies the ability of helical lines to simulate the fields gen-
erated by slow beams for BPM calibration. 

INTRODUCTION 
Capacitative beam position monitors (BPMs) are com-

monly used to measure the orbit of relativistic beams in 
particle accelerators. They can also be used in non-relativ-
istic beamlines, however, the measured positions from the 
BPMs become dependent on the beam velocity and meas-
urement frequency [1, 2]. These effects are due to the elec-
tromagnetic fields generated by the beam no longer being 
pancaked by relativistic effects. For an off axis beam, this 
results in a difference in the extents of the fields along the 
pipe which cause the BPM pickups on opposite sides to 
measure a different frequency spectrum. This effect needs 
to be carefully calibrated in order to achieve accurate meas-
urements. 

Typical calibration of BPMs is performed using a 
straight wire strung through the BPM. Signals are sent 
down the wire that create electromagnetic fields that mimic 
the fields generated from a beam. The wire is moved along 
a grid of positions in the pipe and at each location the po-
sition of the wire is calculated from the BPM signals using 
a difference-over-sum formula. By comparing the calcu-
lated wire positions to the actual positions, non-linear ef-

pendence of the measurements. Benchtop, straight wire 
calibrations are also performed to determine the effects of 
any physical abnormalities of each BPM [3]. 

* Work supported by Michigan State University and the National Science 
Foundation: NSF Award Number PHY-1102511 
#richard@nscl.msu.edu 

To ensure proper calibration of BPMs for use in non-rel-
ativistic beamlines, the signals sent through the BPM 
should travel at the expected beam velocity to properly 
simulate the fields on the pick-ups. 

Helical Wire Phase Velocity 
One method to propagate signals at low velocities is to 

send pulses down a helical wire. Helical lines in free space 
have been shown to propagate signals at any phase velocity 
less than the speed of light by choosing the correct param-
eters for the helix [4]. 

A singal propagating down a helical line can be modelled 
using the sheath helix approximation. A sheath helix is con-
structed by winding a thin wire in a helix. A second thin 
wire is then wound directly above the first and this process 

Figure 1: Normalized phase velocity of the first three 
modes of a sheath helix, pitch angle is 0.048 rad and R/ 
a=4. K is the free space propagation constant and a is 
the helix radius.  

0.11 

fects and abnormalities in the measured positions can be 
determined. 

However, signals on a straight wire propagate at the 
speed of light, therefore straight wires cannot be used to 
calibrate BPMs that will be used to measure non-relativ-
istic beams. Currently, BPMs for non-relativistic beam-
lines are calibrated primarily with simulations to determine 
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Figure 2: Velocity comparison for different ratios of 
pipe radii, R, to helix radius, a. Sheath helix phase ve-
locity of 0th mode in red and results of simulations in 
black.
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is repeated until the entire gap in the helix is filled. Taking 
the limit of the wire radii going to zero, the result is a cyl-
inder or sheath where the surface current travels along a 
helical path. This model is used to simplify the boundary 
conditions at the helix by removing azimuthal and longitu-
dinal variations. 

Using the sheath helix model the phase velocity can cal-
culated for a helix with pitch angle, φ, and radius, a, inside 
a pipe of radius, R (figure 1). The high frequency limit of 
the phase velocity for all modes is v/c=sin(φ). The low 
frequency limit of the phase velocity for all modes except 
for the lowest order mode is the speed of the light. For the 
lowest order mode, the pipe causes the low frequency 
phase velocity to level off below the speed of light. For 
small enough pitch angles the phase velocity plateaus at 
approximately v/c=sin(φ)ln(R/a). If pipe is removed from 
the calculation then the low frequency limit of the phase 
velocity of the lowest mode goes to the speed of light, the 
same as the other modes, and the high frequency limit does 
not change. The behaviour of the higher modes remains the 
same in this case. Without the pipe it would be necessary 
to go propagate signals above ka=1, which can correspond 
to tens gigahertz. The reduction of the phase velocity of the 
lowest mode at low frequencies caused by the pipe allows 
for helices to be used to reproduce beam signals. 

HELIX SIGNALS 

In order for helical lines to be used for BPM calibration 
they must be able to propagate signals of a desired shape at 
a specific velocity to be consistent with a bunch. The prop-
erties of the signals propagated on a helical line in a pipe 
were simulated using CST Suite® [5] and compared to the 
sheath helix model where applicable. The apparatus con-
sisted of a 400 mm long helix in a 410 mm long pipe with 
inner diameter of 40 mm. The extra 5 mm of pipe on each 
side was used to transition the helix to a straight wire be-
fore the end caps. The ends of the pipe are blocked by 
plates that touched the pipe with a 50 Ω line for inputting 
and outputting signals. The end plates are not attached to 
the pipe to allow for the pipe to be moved to simulate dif-
ferent beam positions (Figure 3). The electromagnetic 
fields were measured using field probes at the inside sur-
face of the pipe allowing for the fields that would be de-
tected by a BPM to be measured. Currently, there is not a 
BPM in the simulation to simplify the model and reduce 
simulation time. 

Pulse Velocity 
The velocity of 1ns Gaussian pulses on the helical line 

was measured from the simulations and compared to the 
sheath helix approximation for several different pitch an-
gles and pipe radii (figure 2). For all parameters used, the 
velocity of the primary pulse differed less than 2.5% from 
the low velocity limit of the lowest order pulse. 

Pulse Shape 
When a Gaussian pulse was propagated through the hel-

ical line, the signal separated into several lobes (Figure 4). 
Each consecutive lobe travels at a slightly slower velocity 
causing the lobes to spread apart as the signal propagates. 
The farther the signal propagates the amplitude of each 
lobe grows. 

This effect may be explained by the pulse exciting mul-
tiple modes of the helix, however, the sheath helix model 
predicts that the nth mode can only be excited by frequen-
cies above approximately ka=n or f=nc/a where a is the he-
lix radius and c is the speed of light. For the simulated 
5mm radius helix, the first excited mode requires a fre-
quency above 60 GHz. This is a much higher frequency 
than any of the simulated input signals contained. Another 
issue is the higher modes are capable of propagating with 
velocity from c∙sin(φ) to c. Because of this large range of 
velocities, a faster propagating lobe would be expected to 
exist. The absence of this behaviour makes higher mode 
excitation seem unlikely. 

Another explanation is the formation of the lobes is 
caused by the input signal exciting the lowest order mode 
at a range of frequencies. This interpretation narrows the 
necessary frequency range to a range expected given the 
input signal. However, this explanation fails to explain the 
formation of discrete lobes because the Gaussian input 
pulse has no local peaks in the frequency spectrum to cor-
relate with the phase velocity of the individual lobes. 

Both these explanations fail to adequately explain the 
formation of the lobes, however, they agree that the lobes 
form due to higher signal content. This was found to be 
true. When Gaussian pulses of different widths were input 
into the same helix, the shorter pulses caused the lobes to 
form faster than the longer pulses. In fact, almost no defor-
mation of the signal is seen if the initial pulse is broad 
enough (see Fig. 4). 
Signal deformation is also impacted by the pitch angle of 

the helix. A helix with a smaller pitch angle will cause the 
amplitude of lobes to grow faster which results in more 

Figure 3: Model of helix in a pipe. The left side of the helix has a decreasing pitch angle for impedance matching and 
to improve signal shape. 
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Figure 4: Example of lobe formation in a helix after 
Gaussian signal propagating 150mm. Increasing the 
pulse length decreases the signal deformation as well as 
increasing the helix radius and the pitch angle, φ. 

lobes forming than a looser helix for the same input pulse. 
Therefore, the signal deformation can be reduced by in-
creasing the pitch angle of the helix. However, this also 
causes the phase velocity to increase, but that can be com-
pensated by increasing the radius of the helix to lower the 
R/a ratio. 

The lobe formation can also be reduced by creating a 
section of helix with decreasing pitch angle. In these sec-
tions the input signal is compressed in length by the de-
creasing distance between the turns of the wire. If the sig-
nal is being compressed faster than the lobes are spreading 
apart due to differing phase velocities then the lobes cannot 
split from the original pulse. However, as soon as the pitch 
becomes constant the lobes diverge from the primary pulse. 
Therefore, if the BPM being calibrated is placed just 
passed the reducing pitch angle section of the helix it is 
possible to measure a pulse with minimal deformation that 
is traveling at the appropriate velocity. Another possibility 
is to decrease the pitch angle across the entire helix then 
the BPM can be moved to the region with the desired phase 
velocity. 

These methods of reducing the formation of lobes have 
been found empirical and while they reduce the signal de-
formation they cannot completely remove it, nor do they 
address the root cause of the deformation. Because the sig-
nal deformation appears to be caused by the geometry of 
the helix, it is likely that the deformation cannot be com-
pletely removed. Therefore, it is recommended that the 
BPM is placed as close to the start of the line or end of the 
pitch reduction section to minimize the formation of the 
lobes. 

IMPEDANCE MATCHING 
To properly calibrate BPMs for non-relativistic beam-

lines, several frequencies should be tested because of the 
frequency dependence of the measurements. Therefore, to 
use the helical line for benchtop BPM calibration, the im-
pedance of the input and output must be matched to the 
helical line across a range of frequencies. 

Direct calculation of the impedance from the sheath he-
lix model has proven to be insufficient, most likely due to 

the difference in the fields near the helix. Calculating the 
impedance at the input and output ports is further con-
founded because the wire must deform from the helix near 
the end cap in order to exit at the 50Ω line. 

While a direct calculation of the impedance would be 
useful for exactly matching the impedance at a specific fre-
quency it is less useful for broadband matching because the 
impedance may change greatly over a range of frequency. 
Instead geometric means can be used to help impedance 
matching. The decreasing pitch angle section described 
above not only compresses the signal it also slowly 
changes the impedance of the line. Therefore, by slowing 
decreasing the pitch angle from π/2, a straight wire, at the 
helix to the desired angle, the impedance is changed from 
that of a coax line to the impedance of the desired helix 
line. Matching the input to the helix then becomes a matter 
of matching two coax lines, a much simpler problem. Sim-
ulations show this can increase in the amplitude of the 
propagated signal by a factor of eight, without attempting 
to optimize the decrease in the pitch angle. Similarly, the 
output matching can be improved by increasing the pitch 
angle from the desired helix to π/2. 

However, reducing reflections in this matter is best down 
by slowly decreasing the pitch of the helix. But, in order to 
maintain pulse shape, the pitch angle must be quickly de-
creased to stop the lobes from spreading apart. Therefore, 
when using this method a trade-off must be made between 
signal shape and impedance matching. 

CONCLUSION 
While helical lines show promise for use in benchtop 

BPM calibration. They are capable of propagating pulses 
are any desired velocity less than the speed of light by 
changing the parameters of the helix. Therefore the same 
device can be used for calibrating for different beam veloc-
ities simply by changing the helix. Also, signal defor-
mation can be almost completely removed by increasing 
the pitch angle and propagating a longer pulse. 

However, there are still some issues to be worked out. 
Most importantly, the impedance matching needs to be im-
proved and the signal deformations need to be reduced for 
tighter helices and shorter pulses. However, varying the 
pitch of the helix is a major step in alleviating both these 
problems. 
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