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Abstract

For the EPICS-based control system of the superconduct-
ing Darmstadt electron linear accelerator S-DALINAC, sup-
porting structures based on machine learning are currently
developed. The most important support for the operators
is to assist the beam setup and controlling with reinforce-
ment learning using artificial neural networks. A particle
accelerator has a very large parameter space with often hid-
den relationships between them. Therefore neural networks
are a suited instrument to use for approximating the needed
value function which represents the value of a certain ac-
tion in a certain state. Different neural network structures
and their training with reinforcement learning are currently
tested with simulations. Also there are different candidates
for the reinforcement learning algorithms such as Deep-Q-
Networks (DQN) or Deep-Deterministic-Policy-Gradient
(DDPG). In this contribution the concept and first results
will be presented.

INTRODUCTION

The S-DALINAC [1] is a superconducting, thrice recircu-
lating electron linear accelerator at the institute for nuclear
physics at the TU Darmstadt (see Fig. 1). It is used for inves-
tigation of nuclear structure physics and is operated since
1991 in recirculating mode. The design value of its energy
is 130 MeV at a maximum current of 20 µA. The accelerator
operates in a continuous wave mode with a frequency of
3 GHz. Its electrons are provided by a thermionic gun or
a spin polarized source. The acceleration proceeds, after
passing a copper based chopper prebunching system, in an
up to 10 MeV superconducting injector and an up to 30 MeV
main LINAC. The position and spot size of the electron
beam within its pipe is currently controlled with scintillating
BeO-Targets and can be manipulated with corrector dipoles
and quadrupoles.

It has to be optimized in terms of position, dimension,
transmission and energy resolution to suit the proposed ex-
periment. However, due to partly unknown fluctuations, set
points from previous beam times can not be used again with-
out adaption. At the moment, beam setup is done manually
by operators and can take up to several weeks for the most
complex systems. To improve this situation, it is planed to
use deep reinforcement learning algorithms to support this
process.
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Figure 1: Accelerator hall floorplan of the thrice recirculat-
ing S-DALINAC.

DEEP REINFORCEMENT LEARNING
Deep Learning with the use of artificial neural networks

(NN) as function approximators is used more frequently in
the last years for sensory processing and computer vision [2].
There were also accelerator physics-related applications such
as image based diagnostics of particle beam parameters [3].
More recently, there was a significant progress in combining
deep learning with reinforcement learning, resulting in the
“Deep Q Network” (DQN) algorithm [4]. This was capable
to perform human level performance in many Atari games,
having only the pixel data as its input. Because of the big
parameter space and the nonlinear connection between these,
machine learning and especially NNs are also proposed to
be suited for modeling and control of particle accelerators
[5].

At present, different algorithms are tested with a simple
simulated pair of corrector magnets with the electron beam
tracking algorithm elegant [6].

Parameters and Basic Functions
The standard reinforcement learning setup consists of an

agent interacting with an environment 𝐸, in a sequence of
actions 𝑎𝑡, observations of states 𝑠𝑡 and rewards 𝑟𝑡, where 𝑡 =
{1, … , 𝑇} is the index for one discrete time step. In general
𝐸 can also be stochastic. The values 𝑠𝑡 can be represented
by the beam center coordinates, beam width, target position,
magnet set points, etc. When used with the accelerator,
it is planed to use the areaDetector [7], a plugin for the
EPICS based control system [8] to obtain this information
from the images produced by the scintillating targets. It is
also possible to add additional environment parameters like
temperature or vacuum pressure to 𝑠𝑡. At each time step the
agent chose an action 𝑎𝑡 from a set of set-point changes of
corrector or quadruple magnets. Depending on the chosen
algorithm, the action space can be discrete or continuous.
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The goal is to steer the beam on a desired point of a
target. In order to reach it, the algorithm must be able to
learn from a scalar reward 𝑟. A positive reward is received
if the chosen action will lead to a position change towards
the destination while a negative reward is received if the
beam will increase the distance to the destination or leaving
the target. The objective for the agent is to select actions
maximizing future rewards. The standard assumption is
made that future rewards are discounted by a factor of 𝛾 ∈
[0, 1] per time step so that the return at time 𝑡 is defined as

𝑅𝑡 ≔
𝑇

∑
𝑖=𝑡

𝛾(𝑖−𝑡)𝑟 (𝑠𝑖, 𝑎𝑖) (1)

where 𝑇 is the time step of a terminate state (i. e. beam
reaching the destination or leaving the target). With this, the
optimal action-value function can be defined as

𝑄∗(𝑠, 𝑎) ≔ max𝜋 𝔼 [𝑅𝑡∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (2)

where 𝜋 is the policy that maps the states to actions.
If the 𝑄∗ is known, the agent can chose the action 𝑎 in

the current state 𝑠 with the maximum value of 𝑄∗. This is
the same as maximizing the value of 𝑟 + 𝛾𝑄∗ (𝑠′, 𝑎′), with
𝑠′ being the next state after executing action 𝑎 and 𝑎′ being
the optimal action in the state 𝑠′. This leads to an identity
known as Bellman Equation

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′∼𝐸 [𝑟 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)∣ 𝑠, 𝑎] . (3)

The basic idea behind reinforcement learning algorithms
(included the one described here), is to estimate the action-
value function so the agent can chose the action with the
biggest value of 𝑄∗. This can be done by using the Bellman
equation as an iterative update,

𝑄𝑖+1(𝑠, 𝑎) = 𝔼 [𝑟 + 𝛾 max
𝑎′

𝑄𝑖(𝑠′, 𝑎′)∣ 𝑠, 𝑎] . (4)

For estimating the value of 𝑄 a function approximator
is needed and for that a NN can be used. An NN with at
least one hidden layer and a nonlinear activation function
can be used as universal approximator [9]. The weights 𝜃
of the NN are updated by the algorithms for the objective
𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄∗(𝑠, 𝑎). This is referred as 𝑄-Network in the
following. A model of a 𝑄-Network which could be used
can be seen in Fig. 2.

DEEP-Q-NETWORK-ALGORITHM
One possible candidate for an automatic beam setup using

reinforcement learning is the DQN-algorithm. The complete
algorithm can be looked up in [4]. It is suited for an continu-
ous state space but is limited to a discrete action space. The
basic procedure is shown in Fig. 3. An important hyperpa-
rameter is the greediness 𝜖 which describes the possibility,
that the agent chooses a random action instead of choos-
ing the one with the maximum Q-Value according to the
𝑄-Network. If 𝜖 is chosen to large, the agent tends to rarely

Figure 2: Illustration of an NN as function approximator for
the 𝑄-function.
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Figure 3: Basic visualized priciple of the DQN-algorithm.
The agent selects an action which affects the environment.
The input values for the NN have to be interpreted out of
this environment. The output values of the NN representing
the 𝑄-values and the reward of the interpreter are used to
calculate the new 𝑄-value which is then used to train the
NN.

exploit the state-action pairs with higher rewards and thus the
NN learns less efficient in the interesting areas. However, if
𝜖 is chosen to small, the agent does not look for better strate-
gies which is a problem especially in the start of training.
Therefore it is often chosen as 𝜖 = 𝜖end+(𝜖start−𝜖end)⋅𝑒−𝑡/𝜆

with 𝜆 as a decay hyperparameter and 𝑡 represents the cur-
rent time step. This ensures a balance of exploration and
exploitation during the learning process.

After an action is chosen the reward 𝑟𝑡 is given and and a
new value for 𝑄 can be calculated according to Eq. (4). The
value for max𝑎′ 𝑄𝑖(𝑠′, 𝑎′) can be received from a second
NN, the so called target net, which is a copy of the original
NN (then called policy net) but is only updated in a certain
number of episodes. This improves the stability of the train-
ing. To train the NN a Huber loss function is used (other
loss functions are also possible)

𝐿𝑡 (𝜃𝑡) =
⎧{
⎨{⎩

1
2 (𝑦𝑡 − 𝑄 (𝑠𝑡, 𝑎𝑡; 𝜃𝑖))2 for ∣𝑦𝑡 − 𝑄 (𝑠𝑡, 𝑎𝑡; 𝜃𝑖)∣ < 1
∣𝑦𝑡 − 𝑄 (𝑠𝑡, 𝑎𝑡; 𝜃𝑖)∣ − 0.5 otherwise

(5)
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where 𝑦𝑡 is the calculated updated 𝑄-value from the Bell-
man equation. The weights 𝜃 of the NN are then updated
with a gradient descent method or similar algorithms like
Adam [10] which was used in this application.

A useful technique to prevent overfitting is the replay
memory. It is a cyclic buffer of size 𝑁 where tuples of the
experence at each time step, 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) are stored
in a data set D = 𝑒1, … 𝑒𝑁. At each learning step a so called
mini batch of this buffer is sampled. This minimizes the
correlation between samples and makes the learning process
independent of the agent’s immediate actions (off policy).
Equation (5) will then be changed to the expected value over
a mini batch.

Test of a DQN-Algorthm in a Simulation
The DQN-algortihm was tested with the tracking code

elegant and a simple beam line consisting of one pair of
corrector magnets and a drift line with a length of 15 cm.
The objective was to reach the destination point on the target
within 50 episodes. The deflection angle of the magnets and
the destination points of the virtual target which had a radius
of 15 mm, were chosen randomly in every episode. The
𝑄-Network consists of two hidden layers with each having
128 neurons. As activation function the exponential linear
units

𝑓 (𝑥) =
⎧{
⎨{⎩

𝑒𝑥 − 1 for 𝑥 ≤ 0
𝑥 for 𝑥 > 0

(6)

are used.
The input of the NN was a six dimensional state repre-

sentation, consisting of the current defection angle of both
magnets, the absolute coordinates on the target and the dis-
tance coordinates relative to the destination. These values
are normalized by subtracting its mean value and dividing
by there standard deviation assuming a uniform distribution.

Different action space consists of a discrete change of the
magnet deflection (horizontal and vertical). Three different
action spaces were tested, defined as

𝐴4 = {−5 mrad, 5 mrad}2

𝐴9 = {−5 mrad, 0 mrad, 5 mrad}2

𝐴25 = {−10 mrad, −1 mrad, 0 mrad, 1 mrad, 10 mrad}2 .

An 𝜖-greedy policy with an exponentially decaying 𝜖 was
used to ensure exploration. The parameters were set to
𝜖start = 0.5, 𝜖end = 0 and 𝜆 = 500. Also a replay mem-
ory with the size 10,000 was applied. The algorithm was
trained for 2000 episodes, with one episode ending with the
beam in a certain range of a destination point or by reaching
a critical distance to the center point of the virtual target
representing the escape from the target. One episode was
limited to 50 steps before it was aborted. The given reward
was proportional with the distance reduction (1/mm) per step
with an additional reward (10) when reaching the goal and
negative reward (-10) when leaving the target. The discount
factor was set to 𝛾 = 0.25. The selection of a rather low 𝛾
was reasonable because due to the linearity of the problem

Figure 4: Average reward over the last 10 episodes during
training with the reinforcement algorithm DQN with differ-
ent action space sizes. The strong colored lines shows the
mean value over 20 different training processes. The pale
colored areas marks its 95 % confidence interval [11].

Figure 5: Boxplot to determine the performance of the 20
trained 𝑄-Networks after 2000 training episodes in a test set
of 50 episodes with different action space sizes and random
chosen actions. Successful agents were able to reach the
target. In failed tests the agent left the specified radius and in
aborted cases the agent was not able to reach the goal within
50 episodes [11].

in this test case, the maximization of the current reward will
usually lead to a higher long term return.

The average reward of the 20 training sessions in depen-
dence of the episode for each action space is shown in Fig. 4.
As one can see, the algorithm learns with all action spaces
and it has a better performance with the bigger finer action
space 𝐴25. This approved by an additional test afterwards,
where the trained NNs were tested with 50 random scenarios.
In Fig. 5 it is seen, that the 𝐴25 has the biggest success rate.
It is also possible that more training would lead to a higher
performance.
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CONCLUSION AND OUTLOOK
A first reinforcement learning algorithm working with the

simulation code elegant was presented. It was shown that
the algorithm based on DQN was able to learn the value
function for a simple beam line consisting of two corrector
magnets and a drift path. It was seen that the algorithm had a
better performance with a larger action set and could perform
potentially better with a more episodes of training. As a next
step the algorithm has to be expanded to more complex beam
lines with more demanding tasks so that it can be finally
used in parts of the beam line during operation. Therefor
the NN needs probably more neurons and potentially more
layers.

As mentioned above, the drawback of using DQN-
algorithms is the limitation to a discrete action space. Due
to the discretization the dimension of the action space grows
exponential with the number of elements and the number of
dicretization steps. This limitation could be a bigger problem
when applicating the algorithm to more complex beam lines
with more target set points and quadrupole focusing. An
alternative to DQN is the policy gradient algorithm “Deep
Deterministic Policy Gradient” (DDPG) [12].

In contrast to DQN, DDPG learns a policy 𝜋 ∶ 𝑆 → 𝒫(𝐴)
where 𝑆 represents the state space and 𝒫(𝐴) the power set of
the action space. This has the advantage that no discretiza-
tion is needed. Instead two interleaved NNs are used: One
with the (real numbered) action as output and the other for
calculating the 𝑄-value for this action. Both have the current
state as input and the value network uses the chosen action
additionally.

The DDPG algorithm looks like a promising alternative to
tackle the problems of DQN and will be tested in the future.
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