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Abstract
The beam dynamics in circular and linear particle accel-

erators have been studied defining physics-driven / model-
driven models that have been used for operation of the ma-
chine, diagnostics and feedback system designs. In this
paper, a data-driven technique is evaluated to characterize
the inter-bunch / intra-bunch beam dynamics in particle ac-
celerators. The dynamic modal decomposition (DMD) is an
equation-free, data-driven method capable of providing an
accurate decomposition of a complex system into spatiotem-
poral coherent structures that can be used for short-time
future state prediction and control. It does not require knowl-
edge of the underlying governing equations and only uses
snapshots in time of observables from historical, experimen-
tal, or black-box simulations. The application of the DMD
algorithm to particle accelerator cases is illustrated by exam-
ples of the collective longitudinal motion of the bunches in
a circular storage ring and the transverse motion of a bunch
circulating in an accelerator.

INTRODUCTION
The beam dynamics in circular and linear particle accel-

erators have been studied defining a framework for design
and operation of machines as well as the background for
future research in the topic [1]. Based on this framework,
multiple studies were conducted in order to delineate models
of the beam dynamics to create diagnostic tools and design
feedback systems to stabilize the beam and improve the ma-
chine performance [2]. These physics-driven / model-driven
models are commonly used during the operation of the ma-
chine and their parameters are obtained via measurements to
provide both diagnostic tools to the control room operators
and design tools to set the feedback systems.

There is another option to create models for dynamic
systems that does not requires the previous knowledge of
the physical system. Data-driven modeling and control of
complex systems is a field that is having a large impact in
engineering and physical sciences. Those complex systems
generally evolve on a low-dimensional attractor that can
be characterized by spatiotemporal coherent structures. In
this paper, we present the dynamic mode decomposition
(DMD), and apply it to characterize the intra-bunch and
inter-bunch beam dynamics. As example, the analysis of
the coupled longitudinal beam dynamics of bunches in a

∗ Work supported by the DOE contract #DE-AC02-76SF00515.
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circular accelerator is presented. Results from simulation
are compared with results using traditional methods based
on model-driven analysis. The analysis of the transverse
dynamic of a single bunch is used as an example to show
the application of the DMD algorithm to characterize the
intra-bunch motion.

DYNAMIC MODAL DECOMPOSITION
Generalities

The DMD method originated in the fluid dynamics com-
munity as a method to decompose complex flows into a sim-
ple representation based on spatiotemporal coherent struc-
tures [3]. The particular characteristic of DMD is that it is an
equation-free, data-driven method capable of providing an
accurate decomposition of a complex system into spatiotem-
poral coherent structures that can be used for short-time
future state prediction and control. DMD has a number of
uses, classified in three primary tasks:

• Diagnostics. In particular, the algorithm extracts
key low-rank spatiotemporal features of many high-
dimensional systems, allowing for physically inter-
pretable results in terms of spatial structures and their
associated temporal responses.

• State estimation, future-state prediction, and sys-
tem identification. Another application of the DMD
algorithm is associated with using the spatiotemporal
structures that are dominant in the data to construct dy-
namical models of the underlying processes observed.

• Control. The ultimate goal of the algorithm is to define
viable and robust control strategies directly from the
data sampling or the models identified by the algorithm.
This is the most challenging task due to the dynamics
associated is nonlinear and the DMD creates a linear
model based on the data taken.

Background
The main objective is to characterize the intra-bunch /

inter-bunch dynamics of the beam based on measurements.
The beam dynamics can be represented by a set of ordinary
differential equations (ODE),

𝑑𝑥(𝑡)
𝑑𝑡 = 𝑓 (𝑥(𝑡)) with 𝑥 ∈ 𝑅2𝑛or 𝑥 ∈ 𝐶𝑛

ODEs in general are used to describe the inter-bunch dynam-
ics. Partial differential equation (PDF) are used to represent
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the intra-bunch dynamics of a bunch in the accelerator,

𝜕𝑥(𝑧, 𝑡)
𝜕𝑡 = 𝑔(𝜕𝑥(𝑧, 𝑡)

𝜕𝑧 , 𝑥(𝑧, 𝑡))

with 𝑥 ∈ 𝑅2𝑛or 𝑥 ∈ 𝐶𝑛, and 𝑧 ∈ 𝑅𝑚. If due to the mea-
surements, the state variables 𝑥(𝑧, 𝑡) are not evaluated con-
tinuously in the space variable 𝑧, otherwise at discrete lo-
cations in 𝑧, then the PDE becomes an ODE. If the data is
collected by sampling the state variables at 𝑡 = 𝑘Δ𝑇, with
𝑘 = 1, ..., 𝑁 for a total of 𝑁 measurement times, the ODEs in
continuous time domain is transformed in a discrete equation
𝑥𝑘+1 = 𝐹(𝑥𝑘), with 𝑥𝑘 = 𝑥(𝑡)∣

𝑡=𝑘Δ𝑇
. The beam dynamics

can be simplified more if the analysis is conducted around the
operation point, then by linearizing 𝐹(𝑥𝑘), the equation can
be approximated by 𝑥𝑘+1 = 𝐴𝑥𝑘. All the information about
the beam dynamics is represented by the matrix 𝐴. This
matrix defines a mapping between the subsequent samples
𝑥𝑘 and 𝑥𝑘+1.

The DMD algorithm estimates the matrix 𝐴 and produces
a low-rank eigendecomposition of the matrix A that opti-
mally fits the measured trajectory 𝑥𝑘 for 𝑘 = 1, 2, … , 𝑁 in
the least-square sense so that

‖𝑥𝑘+1 − 𝐴𝑥𝑘‖2

is minimized across all the points for 𝑘 = 1, 2, … , 𝑁 − 1 [3].
To minimize the approximation error across all the snapshots
from 𝑘 = 1, 2, … , 𝑁, it is possible to arrange the 𝑁 snapshots
into two large data matrices:

𝑋 = ⎡⎢⎢
⎣

| | |
𝑥1 𝑥2 … 𝑥𝑁−1
| | |

⎤⎥⎥
⎦

𝑋′ = ⎡⎢⎢
⎣

| | |
𝑥2 𝑥3 … 𝑥𝑁
| | |

⎤⎥⎥
⎦

The local linear approximation 𝑥𝑘+1 = 𝐴𝑥𝑘 may be written
in terms of these data matrices as 𝑋′ = 𝐴𝑋. The best fit A
matrix is given by

𝐴 = 𝑋′𝑋†

where 𝑋† is the Moore-Penrose pseudoinverse.
To solve the pseudo inverse in case the state dimension 𝑛

is large, the DMD algorithm circumvents the eigendecompo-
sition of A by considering a rank-reduced representation in
terms of a Proper Order Decomposition-projected matrix

̃𝐴. The algorithm takes the singular value decomposition
(SVD) of 𝑋, 𝑋 = 𝑈Σ𝑉∗, where ∗ denotes the conjugate
transpose, 𝑈 ∈ 𝐶𝑛×𝑛, Σ ∈ 𝐶𝑛×𝑁−1, 𝑉 ∈ 𝐶𝑁−1×𝑁−1 (In
case 𝑥𝑘 ∈ 𝐶𝑛 and 𝑋 ∈ 𝐶𝑛×𝑁−1). The matrices 𝑈 and 𝑉 are
unitary and the singular values of 𝑋 are, in descendent order,
located in the diagonal of Σ. If the data presents a low order
structure, the singular values will decrease sharply to zero
defining a limited number of dominant modes. In this case,
it is possible to truncate the singular values of 𝑋 and reduce

the system taking into account only those 𝑟 dominant modes.
The decomposition of the matrix 𝑋 can be approximated
by defining 𝑈 ∈ 𝐶𝑛×𝑟, Σ ∈ 𝐶𝑟×𝑟, 𝑉 ∈ 𝐶𝑁−1×𝑟. Thus, the
matrix 𝐴 can be obtained by using the pseudoinverse of 𝑋
obtained via the SVD:

𝐴 = 𝑋′𝑉Σ−1𝑈∗

In practice, it is more efficient computationally to estimate
̃𝐴, the 𝑟 × 𝑟 projection of the full matrix 𝐴 onto the Proper

Order Decomposition modes:

̃𝐴 = 𝑈∗𝐴𝑈 = 𝑈∗𝑋′𝑉Σ−1.

The matrix ̃𝐴 defines a low-dimensional linear model of the
dynamical system:

̃𝑥𝑘+1 = ̃𝐴 ̃𝑥𝑘

where the low- and high-dimensional states are related by
𝑥𝑘 = 𝑈 ̃𝑥𝑘.

The matrix ̃𝐴 can be eigendecomposed by

̃𝐴𝑊 = 𝑊Λ

where the columns of 𝑊 are the eigenvectors and Λ is a
diagonal matrix containing the corresponding eigenvalues
𝜆𝑖, with 𝑖 = 1, … , 𝑟. It is possible to reconstruct the eigen-
decomposition of 𝐴 from 𝑊 and Λ. The eigenvalues of 𝐴
are given by Λ and the eigenvectors of 𝐴 are given by the
columns of Φ

Φ = 𝑋′𝑉Σ−1𝑊

Based on the low-rank approximation of both the eigenval-
ues and the eigenvectors, the solution of the states can be
estimated for all time in the future. The estimation is given
by

𝑥𝑘 ≈
𝑟

∑
𝑖=1

𝜙𝑖𝑒𝜆𝑖𝑘Δ𝑇𝑏𝑖 = Φ𝑒Λ𝑘Δ𝑇𝑏 (1)

where 𝑏𝑖 is the initial condition of each mode, Φ is the matrix
whose columns are the eigenvectors 𝜙𝑖 and 𝑏 is a vector of
the coefficients 𝑏𝑖.

ANALYSIS OF INTER-BUNCH DYNAMICS
To apply the DMD algorithm to characterize the inter-

bunch dynamics, the collective effects of the longitudinal
bunch dynamics of a full circular accelerator is analyzed.
The example corresponds to the electron ring of the Electron
Ion Collider (EIC) under design at Brookhaven National
Laboratory. The ring operates at E = 10 GeV and the beam
current is 𝐼𝑏𝐷𝐶

= 2.5 A and there are 17 RF stations operat-
ing at 1.27 MV.

The longitudinal inter-bunch dynamic is defined by the
coupling between the individual bunches in the ring through
the total machine impedance distributed along the ring. In
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particular if the analysis is focused on the low-order longitu-
dinal modes of the beam dynamics, the main source of cou-
pling among bunches is the RF station impedance. Results
from simulations consider the RF station configured with
the LLRF feedback system optimally setup for impedance
minimization but it does not include any one-turn delay
(comb) filter. Additionally, there is no longitudinal feedback
to stabilize the beam. In this example the beam motion is
unstable.

Given the analysis is focused on the low-order longitudinal
mode dynamics of the beam, the bunches are represented by
a reduced number of macrobunches to reduce the complex-
ity in the simulation. They represent the charge of several
bunches, keeping the total current in the ring equal to nom-
inal. In the simulations, the full ring is represented by 20
macrobunches.

Figure 1 shows the unstable longitudinal motion of all the
macrobunches. To compare the DMD technique with the
traditional model-driven analysis used to study the bean mo-
tion and stability, the data is also processed by transforming
the longitudinal beam motion into the modal domain using
the n even-filled bunch base [2]. The motion in the modal
domain is

𝜑𝑚(𝑡) = 1
𝑛

𝑛
∑
ℓ=1

𝜙𝐵ℓ
(𝑡)𝑒−𝑗2𝜋 𝑚ℓ

𝑛

with 𝜑𝑚(𝑡) motion for the m-mode, 𝜙𝐵ℓ
(𝑡) longitudinal mo-

tion around the synchronous phase of the ℓ-bunch and 𝑛
the total number of macrobunches. Figure 2 depicts the
beam motion in the modal domain, where a slow growing
mode 0 and dominant unstable modes −3, −2, and − 4 can
be observed.

Figure 1: Longitudinal motion of the bunches.
Applying the DMD algorithm described in the previous

section to the data, it is possible to extract the dominant
modes of the beam dynamics. These modes are character-
ized by the eigenvalues

𝜆−3 = 1198 + 𝑗2𝜋4.674𝑒3 𝑠𝑒𝑐−1

𝜆−2 = 818 + 𝑗2𝜋4.389𝑒3 𝑠𝑒𝑐−1

𝜆−4 = 106 + 𝑗2𝜋4.611𝑒3 𝑠𝑒𝑐−1

To validate the model obtained by the DMD algorithm,
the time evolution of the longitudinal displacement obtained

Figure 2: Motion in the modal domain.

by the estimation defined by Eq. (1) is compared with the
original data displayed in Fig.1. Figure 3 depicts the esti-
mated phase angle for all the macrobunches, matching the
time evolution of the original data shown in Fig.1.

Figure 3: Estimated longitudinal motion of the bunches.

ANALYSIS OF INTRA-BUNCH DYNAMICS
The application of the DMD technique to analyze the intra-

bunch dynamics is based on measurements of the transverse
bunch motion in the SPS ring at CERN. To measure the
vertical motion along the bunch, the acquisition stage of a
3.2 GSamp/sec processing system [4–6] is synchronized with
the bunch and able to acquire 16 samples along the 5 nsec
bucket. The signal from the exponential pick-up installed in
the ring is processed to equalize the cable attenuation and
determine the dipole motion of the bunch. This acquired
signal corresponds to the product of the vertical motion 𝑦(𝑧),
at each particular location in the longitudinal dimension 𝑧
of the bunch, and the bunch charge 𝑄(𝑧) at that particular
coordinate.

During these tests, three different lattices have been used
the 𝑄20, 𝑄22, and 𝑄26, in particular for this measurement
the 𝑄22 was set in the machine. Some characteristic pa-
rameters of the bunch motion due to this lattice are, verti-
cal fractional tune ≈ 0.185 and longitudinal fractional tune
≈ 0.011.
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The motion of the bunch measured is unstable and the
transverse displacement in time is depicted in Fig. 4. The
data shows the motion for the 16 samples acquired, where
sample 0 corresponds to the head of the bunch and sample
16 to the tail. The bunch exhibits an unstable ’head-tail’
motion.

Figure 4: Transverse motion along the bunch.

Applying DMD to characterize and reduce the bunch
dynamics, the estimated vertical motion using Eq. (1) for
the same initial condition defined in Fig. 4, is depicted in
Fig. 5. Comparing both figures, the measurements and the
estimated motions match showing that the model extracted
by the DMD algorithm defines the characteristics of the
bunch for that motion.

Figure 5: Estimated transverse motion along the bunch.

Further details of this analysis can be presented. Figure
6 depicts the 𝑛 singular values of the matrix 𝑋 (or matrix
Σ) showing only 𝑟 = 2 dominant modes to characterize this
motion. The data displayed in Fig. 6 includes only the 2
dominant modes to approximate the representation. These
modes have the following eigenvalues:

𝜆𝑎 = 0.0013 + 𝑗2𝜋0.196 1/𝑟𝑒𝑣
𝜆𝑏 = 0.0001 + 𝑗2𝜋0.1965 1/𝑟𝑒𝑣

The associated eigenvectors (or discrete eigenfunctions)
for each mode are depicted in Fig. 7. They all have simi-
lar shapes. Observing the real part of the eigenvalues, it is
possible to conclude that the growth rate of 𝜆𝑎 is dominant

Figure 6: Singular Values of matrix 𝑋.

with respect to the one of 𝜆𝑏. If the bunch motion is free
of noise, the analysis will define only one dominant mode
characterized by the eigenvalue 𝜆𝑎. Due to noise and pertur-
bations in the components settling the transverse motion of
the bunch, this motion has a modulation that is captured and
approximated by the mode defined by the eigenvalue 𝜆𝑏.

Figure 7: Eigenvectors (discrete eigenfunctions) for the dom-
inant modes.

CONCLUSIONS
The dynamic modal decomposition is applied in this work

to identify the inter-bunch / intra-bunch dynamics of the
beam in particle accelerators. The method can be applied to
create analysis and diagnostic tools and could be extended
to identify the beam model to design feedback systems to
stabilize the beam motion.

The advantage of this technique is that it is model-free,
the characterization of the dynamics does not require the
knowledge of the eigenstructure of the system dynamics.
Based on measurements or simulation results the eigenvalues
- eigenvectors (or discrete eigenfunctions) can be estimated
for the dominant modes of the motion.

This technique has been applied successfully in other
fields dealing with ordinary or partial differential equations
to describe the system dynamics.

Further research is necessary to improve the method and
create diagnostic tools and beam model identification.
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