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Abstract
In this tutorial, we start by reviewing some topics in con-

trol theory, including adaptive and model-independent feed-
back control algorithms that are robust to uncertain and
time-varying systems, and provide some examples of their
application for particle accelerator beams at both hadron and
electron machines. We then discuss recent developments in
machine learning (ML) and show some examples of how ML
methods are being developed for accelerator controls and di-
agnostics, such as online surrogate models that act as virtual
observers of beam properties. Then we give an overview of
adaptive machine learning (AML) in which adaptive model-
independent methods are combined with ML-based methods
so that they are robust for and applicable to time-varying
systems. Finally, we present some recent applications of
AML for accelerator controls and diagnostics. In particular
we present recently developed adaptive latent space tuning
methods and show how they can be used as virtual adaptive
predictors of an accelerator beam’s longitudinal phase space
as well as all of the other 2D projections of a beam’s 6D
phase space. Throughout the tutorial we will present recent
results of various algorithms which have been applied at the
LANSCE ion accelerator, the EuXFEL and LCLS FELs, the
FACET plasma wakefield accelerator facility, the NDCXII
ion accelerator, and the HiRES compact UED.

INTRODUCTION
The control of charged particle beams in particle accel-

erator facilities is a very challenging task due to the time
variation and complexity of the beams and of the machines.
Accelerators are typically composed of hundreds-thousands
of coupled components which include radio frequency (RF)
resonant cavities used for acceleration as well as magnets for
focusing of the beams. The performance of large RF systems
is known to drift with time due to external disturbances such
as vibrations in the case of superconducting cavities and tem-
perature fluctuations for normal conducting cavities which
perturb their resonant frequencies. On slower time scales
environmental temperature changes result in slight variation
of RF cables or analog RF components such as mixers or
local oscillators which also introduces phase and amplitude
shifts in the highly sensitive high frequency RF systems.
The performance of magnets is also perturbed and uncertain
due to issues such as power source ripple, hysteresis, and
misalignments.

Charged particle beams themselves are also highly com-
plex and time-varying objects which live in a 6 dimensional
phase space (𝑥, 𝑦, 𝑧, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) which is impossible to mea-
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sure directly or quickly. While newer electron machines are
able to measure 2D longitudinal phase space projections
(𝑧, 𝐸) hadron machines are many times limited to scalar
beam position or current monitor-based measurements on-
line. More detailed measurements are possible but typically
rely on slow emittance scans or wire scanners, which cannot
be performed online in real-time without disrupting oper-
ations. Furthermore, both hadron and electron machines
suffer from time-varying initial phase space distributions at
their sources and undergo complex collective effects such
as space charge forces. In the case of highly relativistic
intense electron beams collective effects such as coherent
synchrotron radiation are also an issue.

Because of all of the complexities and uncertainties de-
scribed above, advanced controls and diagnostics are of great
importance in the accelerator community. Control theory
methods, including adaptive and model-independent feed-
back control algorithms exist which are robust to uncertain
and time-varying systems and we provide some examples
of their application for particle accelerator beams at both
hadron and electron machines. We also discuss recent devel-
opments in machine learning (ML) and show some examples
of how ML methods are being developed for accelerator con-
trols and diagnostics, such as online surrogate models that
act as virtual observers of beam properties. Then we give
an overview of adaptive machine learning (AML) in which
adaptive model-independent methods are combined with
ML-based methods which are used to train surrogate models
directly from raw data.

ADAPTIVE CONTROL
Model-independent feedback methods have been devel-

oped by the control theory community with an emphasis of
robustness to un-modeled disturbances and changes to sys-
tem dynamics. One classic adaptive control result is given
for a scalar linear system of the form

¤𝑥(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑢(𝑡), (1)

where the values of 𝑎 and 𝑏 are unknown. Such a system can-
not be stabilized with simple proportional integral derivative
(PID)-type feedback, but if the sign of 𝑏 is known, for exam-
ple if 𝑏 > 0, a stable equilibrium of (1) can be established
at 𝑥 = 0 by the following nonlinear controller

𝑢(𝑡) = \ (𝑡)𝑥(𝑡), ¤\ (𝑡) = −𝑘𝑥2 (𝑡), 𝑘 > 0. (2)

This approach does not depend on a detailed knowledge of
system dynamics, but has major limitations which are: 1).
The sign of the unknown term 𝑏 must be known and cannot
be time-varying. 2). The presence of an arbitrarily small
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un-modeled disturbance in the dynamics (1) can destabilize
the closed loop nonlinear system [1–3].

For a long time, the main limitation of nonlinear and adap-
tive control approaches was an inability to handle a sign-
changing time varying coefficient 𝑏(𝑡) in system (1) which
multiplies the control input 𝑢(𝑡), such as 𝑏(𝑡) = cos(2𝜋 𝑓 𝑡)
which changes sign repeatedly thereby changing the effect of
control input 𝑢(𝑡). For particle accelerators such variation
comes from the fact that the beam at a certain location is
influenced by many upstream components, such as magnet
settings as well as the initial phase space distribution of the
beam entering into the particle accelerator. Changes in in-
put beams and accelerator components upstream have an
influence on the response of quantities such as beam loss
relative to downstream components. For example, consider
a state 𝑥(𝑡) which describes beam loss in a particle accelera-
tor, whose minimization is desired, which is influenced by
a large collection of quadrupole magnets u = (𝑢1, . . . , 𝑢𝑚).
The effect of a single magnet, 𝑢𝑚, depends on the initial
beam’s phase space as it enters the accelerator from the
source and also on the settings of all of the other quadrupole
magnets that are upstream, 𝑢𝑖<𝑚 and changes with time as
the upstream magnets are adjusted and as the initial beam
conditions change. One day decreasing 𝑥 may require de-
creasing the current of magnet 𝑢𝑚 and another day it might
have to be increased.

The control and stabilization of time-varying systems is
notoriously difficult, even simple linear time-varying sys-
tems are difficult to analyze in general because standard
eigenvalue techniques break down and stability can only be
proven by using Lyapunov theory [1]. Recently, a nonlinear
extremum seeking (ES) feedback control method was devel-
oped which could stabilize and minimize the analytically un-
known outputs of a wide range of dynamics systems, scalar
and vector-valued which can be time-varying, nonlinear and
open loop unstable with unknown control directions [4–6].
The ES method is applicable to a wide range of nonlinear
and time-varying systems of the form

¤𝑥 = 𝑎(𝑡)𝑥(𝑡) + 𝑏(𝑡)𝑢( �̂�(𝑡)),
¤x = 𝐴(𝑡)x(𝑡) + 𝐵(𝑡)u( �̂�(𝑡)),
¤x = f (x(𝑡), u( �̂�(𝑡)), 𝑡),

�̂�(x, 𝑡) = 𝑦(x, 𝑡) + 𝑛(𝑡), (3)

which include scalar time-varying linear systems, vector-
valued time-varying linear systems, and vector-valued non-
linear time-varying systems, where in each case the feedback
control 𝑢 is based only on a noise-corrupted measurement
�̂�(𝑡) of an analytically unknown cost function 𝑦(x, 𝑡). For
example, a measurable but analytically unknown cost func-
tion an be the sum of beam loss along a many kilometer
long particle accelerator, which depends on all accelerator
parameters and on the initial 6D phase space of the beam
being accelerated.

For accelerator applications, the ES method can tune
groups of parameters, p = (𝑝1, . . . , 𝑝𝑚). For example,
tuned parameters might include RF cavity amplitude and

phase set points as well as magnet power supply voltages
or currents. The adaptive ES algorithm dynamically tunes
parameters according to

¤𝑝 𝑗 = 𝜓 𝑗

(
𝜔 𝑗 𝑡 + 𝑘 �̂�(x, 𝑡)

)
, (4)

where 𝜔𝑖 are distinct dithering frequencies defined as 𝜔𝑖 =

𝜔𝑟𝑖 with 𝑟𝑖 ≠ 𝑟 𝑗 for 𝑖 ≠ 𝑗 , 𝑘 is a feedback gain. The 𝜓 𝑗 may
be chosen from a large class of functions which may be non-
differentiable and not even continuous, such as square waves
which are easily implemented in digital systems [6]. The
only requirements on the 𝜓 𝑗 are that for a given time interval
[0, 𝑡] they are measurable with respect to the 𝐿2 norm and
that they are mutually orthogonal in Hilbert space in the weak
sense relative to all measurable functions 𝑓 (𝑡) ∈ 𝐿2 [0, 𝑡] in
the limit as 𝜔 → ∞, which can be written as

lim
𝜔→∞

∫ 𝑡

0
𝜓𝑖 (𝜏)𝜓 𝑗 (𝜏)𝑑𝜏 = 0, ∀𝑖 ≠ 𝑗 ,

lim
𝜔→∞

∫ 𝑡

0
𝜓𝑖 (𝜏) 𝑓 (𝜏)𝑑𝜏 = 0, ∀𝑖, ∀ 𝑓 (𝑡) ∈ 𝐿2 [0, 𝑡],

lim
𝜔→∞

∫ 𝑡

0
𝜓2
𝑖 (𝜏) 𝑓 (𝜏)𝑑𝜏 =

∫ 𝑡

0
𝑐𝑖 𝑓 (𝜏)𝑑𝜏,

∀𝑖,∀ 𝑓 (𝑡) ∈ 𝐿2 [0, 𝑡], 𝑐𝑖 > 0.

One particular implementation of the ES method is es-
pecially convenient for particle accelerator applications be-
cause the tuning functions 𝜓𝑖 have analytically guaranteed
bounds despite acting on analytically unknown and noisy
functions, which guaranteed known update rates and limits
on all tuned parameters [5]:

𝑢𝑖 =
√
𝛼𝑖𝜔𝑖 cos (𝜔𝑖𝑡 + 𝑘 �̂�(x, 𝑡)) . (5)

The utility of this approach is clearly demonstrated by con-
sidering a system of the form

¤x = f (x(𝑡), u( �̂�(𝑡)), 𝑡), ¤𝑝𝑖 =
√
𝛼𝜔𝑖 cos (𝜔𝑖𝑡 + 𝑘 �̂�(x, 𝑡)) ,

(6)
which results in average dynamics that minimize the noise-
corrupted unknown function 𝑦(x, 𝑡):

¤̄𝑝𝑖 = − 𝑘𝛼

2
𝜕𝑦(x, 𝑡)
𝜕𝑝𝑖

. (7)

This method has been utilized for various particle accelerator
applications including real-time betatron oscillation mini-
mization in a time-varying magnetic lattice at the SPEAR3
synchrotron [7], for maximization of the output power of
the Linac Coherent Light Source (LCLS) free electron laser
(FEL) and of the European X-ray FEL [8], for real-time multi-
objective optimization for simultaneous trajectory control
and emittance growth minimization at the AWAKE plasma
wakefield acceleration facility at CERN [9], and for beam
loss minimization by automatically tuning the amplitude and
phase set points of multiple RF cavities at the Los Alamos
Neutron Science Center (LANSCE) linear ion accelerator.
One limitation of adaptive methods such as the ES approach
is that they are local feedback-based methods and it is possi-
ble for them to get stuck in a local minimum when optimizing
for an analytically unknown output function.
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Figure 1: The accuracy of the 𝜎𝑦 prediction quickly degrades once the system has had time to evolve and leaves the span
of the collected training data set. Such an approach would have to be continuously and repeatedly re-trained to maintain
accuracy, which is infeasible and defeats the purpose of the ML-based diagnostic [16].

LIMITATIONS OF ML FOR
TIME-VARYING SYSTEMS

Machine learning (ML) tools are being developed that can
learn representations of complex accelerator dynamics di-
rectly from data. ML methods have been utilized to develop
surrogate models to act as virtual diagnostics [10], powerful
polynomial chaos expansion-based surrogate models have
been used for uncertainty quantification [11], convolutional
neural networks have been used for time-series classification
and forecasting in accelerators [12], Bayesian Gaussian pro-
cesses utilize learned correlations in data/physics-informed
kernels [13], surrogate models can help speed up simulation-
based optimization [14], and various ML methods have been
used for beam dynamics studies at CERN [15].

A major limitation of ML methods, and an active area
of research in the ML community, is the problem of time-
varying systems, known as distribution shift. If a system
changes with time then the data that was used to train an
ML-based tool will no longer provide an accurate represen-
tation of the system of interest, and the accuracy of the ML
tool will degrade. Distribution drift is a challenge for all
ML methods including neural networks for surrogate mod-
els, the use of neural networks to represent cost functions
or optimal policies in reinforcement learning, and even for
methods such as Gaussian processes which utilize learned
correlations in their kernels. Incorporating methods to deal
with distribution shift is a major need for the accelerator
community because accelerators and their beams change un-
predictably with time. This challenge is illustrated by Fig. 1
which demonstrates that an ML-based prediction quickly
degrades in accuracy as the system changes over time, which
in this case is the 𝜎𝑦 beam prediction for the LCLS [16].
Such an approach would have to be continuously and repeat-
edly re-trained to maintain accuracy, which is infeasible and
defeats the purpose of the ML-based diagnostic.

ADAPTIVE ML FOR TIME-VARYING
SYSTEMS

Efforts have begun to combine the robustness of adaptive
feedback with the global representations that can be learned
with ML methods to develop adaptive machine learning
(AML) for time-varying systems. The first such result com-
bined neural networks and model-independent feedback to

provide fast, robust, and automatic control over the energy
vs time phase space of electron bunches in the LCLS [17].
Recently, AML methods have been studied in more general-
ity for adaptive tuning of the inputs and outputs of ML tools
such as neural networks for time-varying systems [18].

Some of the most powerful ML tools are encoder-decoder
generative convolutional neural networks (CNN) which can
be used to find highly efficient nonlinear functions that can
project incredibly high dimensional input spaces, which may
be combinations of images and vectors, down to a very low
dimensional latent space, before generating back up to a
high dimensional representation [19,20]. Encoder-decoder
networks have been used for anomaly detection [21], time-
series data [22], and for optimization of deep generative
models [23].

A novel approach to AML for time-varying systems is
now being developed which utilizes such generative CNN-
based encoder-decoders to adaptively tune directly the low-
dimensional latent space representation (as small as 2 di-
mensions), for incredibly high dimensional systems (hun-
dreds of thousands - millions of parameters) [24–26]. The
setup of such an encoder-decoder generative CNN is shown
in Figure 2. The network takes inputs that are 2D images
of beam phase space distributions together with vectors of
accelerator parameter settings such as magnets and RF sys-
tems. The high dimensional inputs are squeezed down to
a low-dimensional latent space representation from which
a collection of distributions is then generated, as shown in
Figure 3 for a 2-dimensional latent space representation.

The method works by first performing a supervised
learning-based training in which we have access to input-
output pairs of the form (xin,Xin, Ŷout) where xin are vec-
tors of accelerator parameter inputs, Xin are stacks of 2D
phase space image inputs. The generative half of the
encoder-decoder CNN builds back up to a high dimen-
sional output Ŷout which is a 752, 640 = 224 × 224 × 15
dimensional output with the 15 channels representing the
15 2D projections of the 6D phase space: (𝑥, 𝑦), (𝑥, 𝑧),
(𝑥, 𝑥′), (𝑥, 𝑦′), (𝑥, 𝐸), (𝑥′, 𝑦), (𝑥′, 𝑧), (𝑥′, 𝑦′), (𝑥′, 𝐸),
(𝑦, 𝑧), (𝑦, 𝑦′), (𝑦, 𝐸), (𝑦′, 𝑧), (𝑦′, 𝐸), (𝑧, 𝐸) in the HiRES
UED as shown in Figure 2 and in a similar setup the output
is a 1, 228, 800 = 128 × 128 × 75 dimensional object with
the 75 channels representing the 15 2D projections of the 6D
phase at 5 different locations in FACET-II, shown in 3. By
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Figure 2: The HiRES encoder-decoder CNN structure for the AML setup is shown with layer sizes such as (224, 224, 15)
representing an output of 15 filters of image size 214 × 214 each. The dense layer widths shown as single numbers.

Figure 3: An encoder-decoder convolutional neural network setup is shown which takes an image of an electron beam’s
(𝑥, 𝑦) phase space distribution as an input together with a vector of accelerator parameters (A). The high dimensional inputs
are squeezed down to a 2 dimensional latent space (B), from which 75 2D distributions are then generated which are all
15 2D projections of the beam’s 6D phase space at 5 different particle accelerator locations (C). Some of the projections,
such as the (𝑧, 𝐸) longitudinal phase space distributions can be compared to TCAV-based measurements to guide adaptive
feedback which takes place in the low dimension latent space to compensate for unknown changes in both the accelerator
parameters and in the initial beam distribution (D). The variation of the (𝑥/, 𝑦/) and (𝑧, 𝐸) 2D phase space projections is
shown as one moves through the 2D latent space learned by the network and adaptively tuned (E) [25].
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forcing the generative half of the CNN to predict such high
dimensional outputs which contain all of the projections of
the beam’s 6D phase space simultaneously, we are forcing
the CNN to learn the relationships between various phase
space projections as well as their correlations and physics
constraints within the particle accelerator system for which
the network is being trained.

In both the HiRES and the FACET-II setup we are con-
sidering a mapping of inputs to outputs of the form

Ŷout (𝑡) = F (xin (𝑡),Xin (𝑡)) , (8)

where both the accelerator parameters xin (𝑡) and the input
beam Xin (𝑡) are expected to change unpredictably with time
and furthermore we assume that we will not have access to
non-invasive and accurate measurements of these changes.
Furthermore, once the accelerator is operational, we lose
access to most of the true measurements of the beam’s phase
space Yout (𝑡) which could be compared to their predictions
from the generative CNN Ŷout (𝑡). However, most advanced
accelerators do have access to non-invasive measurements
of some subset of the beam’s phase space, for example trans-
verse deflective cavities together with dipole magnets can be
used to measure the beam’s longitudinal phase space (LPS)
2D (𝑧, 𝐸) distribution as is routinely done at the LCLS.

In order to accurately predict Ŷout (𝑡) without knowledge
of the time-varying accelerator beam and component mea-
surements (xin (𝑡),Xin (𝑡)), we rely on the fact that the gen-
erative CNN has learned the correlations within the system
and respects the physics constraints in the data and therefore
we use just the available measurements, such as the LPS dis-
tribution or energy spread spectrum measurements, which
we denote as Ŷ𝑖 (𝑡) ∈ Ŷout (𝑡).

We compare just these predictions to their measurements
and operate the trained generative CNN in a un-supervised
adaptive manner in which we apply feedback directly on the
low-dimensional latent space representation in order to track
the time-varying measurements by actively minimizing a
cost function in real time, of the form:

𝐶 (Y𝑖 (𝑡), Ŷ𝑖 (𝑡)) =
∬ ��Y𝑖 (𝑡) − Ŷ𝑖 (𝑡)

�� 𝑑𝑌𝑖 , (9)

which is minimized by adaptively tuning the latent space
parameters y𝐿 = (𝑦1, . . . , 𝑦𝑛), according to the model-
independent ES algorithm described above, according to:

𝑑𝑦 𝑗 (𝑡)
𝑑𝑡

=
√
𝛼𝑖𝜔𝑖 cos

(
𝜔 𝑗 𝑡 + 𝑘 𝑗𝐶 (Y𝑖 (𝑡), Ŷ𝑖 (𝑡))

)
, (10)

as shown in Figure 2.
Note that with this implementation, the relationship in

Equation (8) is now being approximated by

Ŷout (𝑡) ≈ F̂ (y𝐿 (𝑡)) , (11)

where F̂ is the generative half of the CNN and Ŷout (𝑡) is
now parameterized by the low dimensional latent space
vector y𝐿 (𝑡) without needing access to measurements of
(xin (𝑡),Xin (𝑡)).

One example of such convergence for the FACET-II setup
with a 7-dimensional latent space is shown in Figure 4, which
shows the trajectory taken by ES in the latent space from
a starting point very far from the correct input distribution
and accelerator parameters (xin (𝑡),Xin (𝑡)) as it converges
to the global minimum, with the components (𝑦1, 𝑦𝑛) for
𝑛 ∈ {2, 3, 4, 5, 6, 7} shown overlaid on top of the cost func-
tion surface. Figure 5 shows the results of the convergence

Figure 4: Several 3D projections (𝑦1, 𝑦𝑛) for 𝑛 ∈ {2, 3, 4, 5, 6, 7} of convergence within the 7D latent space are shown
with the adaptively tuned trajectory shown as black dots lifted slightly above the surface of the cost function. The cost
convergence is also shown and seen to take approximately 400 steps to converge.
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Figure 5: Predictions of the 7D latent space model of the phase space at bunch compressor 20 of FACAT-II (BC20) and at
the interaction point (IP). The red dashed box shows a LPS diagnostic that was used as part of the cost function while the
other 2D phase space projections in the green dashed box were unseen by the CNN which is correctly predicting projections
of the beam’s 2D phase space not only at BC20, but also at the unseen IP location.

which gives a close match of various 2D phase space pro-
jections throughout the accelerator despite feedback acting
only based on a single LPS measurement.

CONCLUSION
This work demonstrates an adaptive ML approach to high

dimensional time-varying systems in general and in partic-
ular for particle accelerator applications in which both the
accelerator components and the input beams change unpre-
dictably with time due to various external disturbances. By
training a deep convolutional encoder-decoder style gener-
ative neural network and forcing it to predict all 2D pro-
jections of the beam’s 6D phase space simultaneously this
physics-informed approach gives accurate predictions for
unseen phase space projections by adaptively matching only
a measurable distribution.
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