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Abstract 
HIMM, a Heavy Ion Medical Machine, developed by In-

stitute of Modern Physics, has been in operation since April 
2020. The beam emittance of the cyclotron exit is measured 
with the most often used techniques, i.e. slit-grid, Q-scan 
and 3-grid at a dedicated beam line which is not the actual 
HIMM optical line. The high speed data acquisition archi-
tecture is based on FPGA, and motion control system is 
constructed based on the NI module. 

The data post processing and emittance calculation is 
based on Python code with self-developed algorithm, in-
cluding Levenberg–Marquardt optimization algorithm, 
thick lens model, dispersion effect correction, error bar fit, 
mismatch check, image denoise and “Zero-thresholding” 
calculation. The algorithm description and simulation are 
discussed in detail. The application of the algorithm to 
HIMM cyclotron is presented in this paper as well. 

INTRODUCTION 
The heavy ion medical machine (HIMM) is developed 

by the Institute of Modern Physics (IMP), which consists 
of two electron cyclotron resonance (ECR) ion sources, a 
cyclotron, a synchrotron ring and five nozzles [1]. The syn-
chrotron has a compact structure with a circumference of 
56.2 m. The layout of the HIMM complex is shown in 
Fig. 1. Up to now, the slow-extraction efficiency of HIMM 
has reached nearly 90% for all energies from 120 to 
400 MeV/u. The spill duty factor has exceeded 90% at a 
sample rate of 10 kHz with the feedback-based slow-ex-
traction technique applied [2, 3]. 

 
Figure 1: Layout of the HIMM complex. 

Cyclotron, as the injector, plays a critical role in HIMM 
complex, which delivers the high quality beam to the ring 
through the MEBT (median energy beam transport line). 
The emittance and TWISS parameters measurement at the 

exit of the cyclotron are essential. Before integrating the 
cyclotron into HIMM, a dedicated beam line is constructed 
temporarily at the laboratory, and the measurement of emit-
tance is performed along it.  

The emittance and TWISS parameters at the exit of the 
cyclotron are measured using three most commonly used 
methods, slit–grid [4-6], Q-scan [7-9] and 3-grid [8-10]. A 
cross-check is of capability to validate this measurement. 

In this paper, optimizition algorithm for Q-scan and 3-
grid is introduced, in which dispersion correction and thick 
lens model fit are of the most importance in improving the 
reconstruction accuracy of the emittance. In addition, slit-
grid algorithm, especially denoising in reconstrucing the 
beam phase space is interpreted also. Both the optimizition 
algorithm and denoising process can result in a positive im-
provement for emittance calculation from the view point of 
simulation and analytic derivation. Finally, the measure-
ment results of the cyclotron are presented. 

ALGORITHM DESCRIPTION AND 
SIMULATION 

Optimizition Algorithm for Q-scan and 3-grid 
In the approximation of linear, beam transport along a 

lattice can be expressed in the form of matrix, which 
indicate how the transfer elements impose a function to the 
beam. From the view of matrix point, a transfer matrix can 
be formulated as 

 𝑀 𝑎 𝑏
𝑐 𝑑

 (1) 

without the loss of generality. The matrix must be symplec-
tic, which is a remarkable property of a Hamiltonian sys-
tem. After the implementation of the matrix, the squared 
distribution in the real space at the exit of the lattice ele-
ment can be written as  

 ∑ 𝑎 〈𝑥 〉 𝐷 〈𝛿 〉 2𝑎𝑏 〈𝑥 𝑥 〉
                            𝐷𝐷 〈𝛿 〉 𝑏 〈𝑥 〉 𝐷 〈𝛿 〉  2  

, with the dispersion considered and chromaticity ignored. 
For a typical configuration of focus lens followed by a drift, 
the 𝑎 and 𝑏 can be expressed as 

 𝑎 𝑘 cos√𝑘𝑙 √𝑘𝐿𝑠𝑖𝑛√𝑘𝑙 
 𝑏 𝑘

√
sin√𝑘𝑙 𝐿𝑐𝑜𝑠√𝑘𝑙 3  

with 𝐿  the drift length, 𝑘 𝐵 𝐵𝜌⁄  , 𝐵 𝑙 𝐶 𝐶 𝐼 , 𝐶  
and 𝐶   for calibrated coefficient of magnet. For Q-scan 
scheme, the desired values, i.e., 〈𝑥 〉, 〈𝑥 𝑥 〉, 〈𝑥 〉, can be 
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obtained via solving a non-linear least squares problem 
with the objective function given as follows 

 ∑ 𝑰,𝜶;𝐷,𝐷 ,𝛿 ∑  4  

, in which, 𝜶 〈𝑥 〉, 〈𝑥 𝑥 〉, 〈𝑥 〉  . To find a solution, 
the following minimization procedure would be imple-
mented, 

 𝜶 arg min𝜶𝑆 𝜶  5  

where 𝑆 𝜶 ∑ 𝑦 ∑ 𝑰,𝜶;𝐷,𝐷 ,𝛿 . 

If data uncertainties involved, the minimization may 
be scaled with a weighting factor 𝜀 that refers to the un-
certainties of the profile 𝑦 , 

 𝜶 arg min𝜶 ∑
∑ 𝑰,𝜶; , ,

 6  

The most widely used optimization algorithm for this is 
the so called Levenberg–Marquardt algorithm (LMA or 
just LM), which can be thought of a combination of the 
method of gradient descent and the Gauss-Newton 
algorithm (GNA), both of which are the most classical 
optimization algorithm. Thus, LMA adapts the advantages 
of both of the two algorithm, and hence has high 
performance as expected [11-13].  

 
Figure 2: The difference between parabolic fit based thin 
lens model and LMA fit based thick lens model. Red dot-
line is parabolic fit based thin lens model. Black dot-line is 
LMA fit based thick lens model, which agrees well with 
the theoretical emittance depicted by blue dot-line. 

If 𝐷,𝐷 ,𝛿   are given at the measurement point 
beforehand, the TWISS parameters can be extracted with a 
high accuracy. For the case of unknown 𝐷,𝐷 ,𝛿  , to 
extract the whole parameters including 𝐷,𝐷 ,𝛿  
simultaneously , at least one dipole must be involved along 
the transport line.  

For 3-grid scheme, the variable would be drift length 𝐿  
instead, hence, the objective function will be 

 ∑ 𝑳,𝜶;𝐷,𝐷 ,𝛿  7  

LMA is an iterative approach with trust-region searching 
strategy. For each iteration, the Jacobian matrix 𝑱
𝜕𝒓 𝜕𝜶⁄  is given as the first step, and then the advance of 𝜶, 
∆𝜶, is found by solving the following linear equation 

 𝑱 𝑱 𝜆𝑰 ∆𝜶 𝑱 𝒓 8  

Where 𝑰  is the identity matrix and 𝜆  is a damping 
parameter to control the solution ∆𝜶 brings 𝒓 𝒓 down hill 
how fast. The error of the fitting parameters is estimated by 
the covariance matrix defined as 𝑪 𝑱 𝑱 and then the 1σ 
error bar is 𝜎 𝐶  for the i’th paremeter [14]. 

A simulaton is performed based on the discussion above. 
First, the dispersion-free beam line is tracked,  comparision 
between parabolic fit based thin lens model and LMA fit 
based thick lens model is presented in Fig. 2. With thin lens 
model and parabolic fit applied, the solutions don’t 
converge to the actual one, and a visible difference is 
observed as expected. Highly overestimated results occur 
at high current cases, which can be inferred from the fact 
that thin lens approximation is reasonable only when the 
quadrupole current is low. LMA fit based thick lens model 
gives the desired results in comparison to the actual one 
with a deviation of 1.56%. 

Typically, dispersion can result in overestimated 
measurement of emittance from the enlarged beam width. 
The typical treatment for dispersion is to subtract its 
contribution from the measured beam width [15], like that 
〈𝑥 〉 〈𝑥 〉 𝐷 〈𝛿 〉 . However, this procedure is 
sometimes error-prone and of less robustness since the dis-
persion has to be evaluated explicitly as a function of quad-
rupole settings. An alternative is to take account of it as the 
fixed parameters in the fit model, which is more reasonable 
if the dispersion is given at the initial position as the first 
time, as interpreted in Eq. (5).  

 
Figure 3: Left: non-zero dispersion induced beam width 
change. (green star) Diagnostics section is dispersion-free. 
(blue angle) Residual dispersion D = 5 m at the entrance of 
quadrupole. (red line) Fit using thick lens model with dis-
persion correction algorithm applied. Right: reconstructed 
phase space plotted in normalized coordinates frame, 
which displays the mismatch qualitatively. 

The simulation results of emittance change induced by 
dispersion are shown in Figs. 3 and 4. The beam width 
change induced by a non-zero dispersion can be observed 
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from Fig. 3 left. With the increase of dispersion, the recon-
structed emittance is overestimated more and more, espe-
cially when the derivative of dispersion is positive, as pre-
sented in Fig. 4. If fit model treats dispersion as known pa-
rameters as formulated in Eq. (5), the dispersion-free 
TWISS parameters can be achieved with a good accuracy. 
This can be observed alternatively from the normalized 
phase space illustrated in the right plot of Fig. 3. which dis-
plays the mismatch between the designed (machine circle) 
and measured phase space (measured circle). A mismatch 
factor can be calculated as described in [16, 17],  

 ξ 𝛾 𝛽 2𝛼 𝛼 𝛽 𝛾  9  

if the designed TWISS 𝛽 , 𝛾  is equal to the measured 
one 𝛽, 𝛾 , the beam is matched to the machine optical, 
otherwise the mismatch is indicated by ξ. 

 
Figure 4: The comparison between with and without dis-
persion correction applied. Before correction and disper-
sion derivative 𝐷 0 (red), before correction and disper-
sion derivative 𝐷 0 (black), after correction (blue), the-
oretical one (purple). 

‘Zero-Thresholding’ Approach for Slit-Grid 
Technique 

The slit-grid measurement would generate a 2D phase 
space that is the area the emittance calculation launched. 
From which, the RMS emittance can be retrieved 
statistically. To simplify the calculation, the data index of 
the phase space matrix are used instead of the data itself 
[18]. The RMS emittance is defined as  

 𝜀 𝜎 𝜎 Δ𝑥Δ𝑥 1 𝜌  10  
the notation is the same with the reference [18].  

Typically, the data are noisy owing to disturbances from 
the MW electronics and the environment. It is, therefore, 
necessary to denoise the data before performing the 
calculation. A systematic procedure to complete the 
emittance evaluation is given in [19], in which, a method 
called ‘zero-thresholding’ approach is proposed. For the 
method, the beam phase space is processed following a 
systematic procedure, including ad hoc-based interpolation, 
wavelet-based denoising, threshold-based ROI selection, 
and ‘‘zero-thresholding’’-based emittance extraction. From 

the simulation, the quantized error decreases with the 
increased interpolation number, and a deviation of below 
4% is reached when interpolation number 4 is given. The 
theory supporting the ‘‘zero-thresholding’’based emittance 
extraction is given in APPENDANCE. 

APPLYING ALGORITHM TO HIMM 
CYCLOTRON 

The emittance of the HIMM cyclotron is measured and 
the data processing is finished. Three techniques are 
employed to complete this procedure, and the algorithm 
disscused above is applyed. The results are shown in 
Table 1, Figs. 5-7. 

The results of these measurements agree well with each 
other for the vertical plane. There is a discrepancy for the 
horizontal plane, however. Based on our deductions, this is 
attributed to the nonzero dispersion contribution. The dis-
persion and its derivative are not known with a high accu-
racy in the horizontal plane at the exit of cyclotron, and the 
temporal beam line is not designed to be dispersion-free in 
the diagnostics section. 

Table 1: Emittance Summary at the Exit of HIMM Cyclo-
tron Measured Using Three Techniques 

 Slit-grid Q_scan 3-grid 
Horizontal(95%) 
[mm*mrad] 

45.32 51.5 56.93 

Vertical (95%) 
[mm*mrad] 

37.56 31.8 38.15 

APPENDANCE 
For simplicity, assumping the real space distributuion 

obeys 1D Gaussian function with zero mean, that is x ∼
𝒩 𝑥; 0,𝜎  . The probability density function can be 
formulated as 

 𝑓 𝑥;𝜎
√

exp . (A1) 

The maximum intensity locates at 𝑥 0, and the value is 
𝐼 𝑓 0 1 √2𝜋𝜎⁄  . Assumping the threshold is  
𝐼  χ𝐼 , in which, χ ∈ 0,1  means the proportion of  
the signal the threshold occupied. A larger χ  is 
corresponding to a smaller phase space, and hence a 
cleaner phase space. The phase space coordinates 𝑥  
corresponding to the threshold 𝐼   can be evaluated by 
𝑓 𝑥 𝐼 , which gives  

 𝑥 2𝑙𝑛 𝜒𝜎 . (A2) 

If beam phase space is not cut by the threshold, that is 
χ 0  or 𝑥 ∞ , the statistic deviation of the 
distribution is 𝜎 exactly.  However, when it is cut, the new 
statistic deviation should be evaluated via the definition as 

 𝜎 〈 𝑥 〈𝑥〉 〉

                                
√

 A3  
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Figure 5: Phase space distribution obtained from slit-grid technique. Left:  the horizontal plane, Right: the vertical plane. 
Top: the raw phase space, bottom: the denoised phase space, the red dashed line is the contour line with a contour level 
of 10%, and the black dashed line is the measured 1σ phase ellipse.

 
Figure 6: Q-scan data and fit. Left: the horizontal plane; Right: the vertical plane.

 
Figure 7: 3-grid data and fit. Left: the horizontal plane; Right: the vertical plane.
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, in which 𝑖  is the complex, 𝐷𝑎𝑤 𝑥 ≡
exp 𝑥 exp 𝑡 𝑑𝑡  is the Dawson’s integral, 

𝐸𝑟𝑓 𝑧 ≡
√

exp 𝑡 𝑑𝑡  is the Error function. The 

ratio between 𝜎  and 𝜎 is  

𝛿 𝜒
√

.          A4  

The evolution of 𝛿   with χ  is shown in Fig. 8. It is a 
monotonic decreasing function. The limit of  𝛿 𝜒   near 
the χ 0 is 

 lim
→
𝛿 𝜒 1 (A5) 

, which indicates that 𝜎   approaches 𝜎  when χ 
approaches 0. It geives the correctness of the formulation 
Eq. (A4). With the increase of  χ, a linear section occurs, 
which gives the possibility to approximate the 𝜎 with 𝜎  
linearly. Series expansion of 𝛿 𝜒  at far away from χ 0 
is 

𝛿 𝜒 0.823 1.453 𝜒 0.1  
                                       𝒪 𝜒 0.1 . (A6) 

Linear approximation gives a good estimation of 𝜎, as 
depicted in Fig. 8. Therein the dotted red line is a linear 
approximation of 𝛿 𝜒 . The deviation is large somewhat 
near the χ 0. The maximum deviation is 0.03, and the 
maximum deviation in terms of statistic deviation 𝜎 is less 
than 2%. 

 
Figure 8: The evolution of 𝛿  with χ. Green line is 𝛿 𝜒 , 
dotted red line is a linear approximation. 
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