PAUL SCHERRER INSTITUT

G. L. Orlandi (*), P. Craievich, M. M. Dehler, R. Ischebeck, F. Marcellini, D. Stäger

Charge Measurements in SwissFEL and Results of an Absolute Charge Measurement Method

10th International Beam Instrumentation Conference (IBIC 2021) Remote 13-17 September 2021

(*) gianluca.orlandi@psi.ch

➢ Overview of the SwissFEL charge monitors

- Faraday Cup
- Integrating Current Transformer
- Wall Current Monitor
- Cavity Beam Position Monitor

Wall Current Monitor: experimental characterization and numerical modelling results

Cavity Beam Position Monitor for absolute charge measurements

Charge measurement campaign at SwissFEL

Procedure for absolute calibration of the SwissFEL charge monitors

➤Conclusions

➢ Beam energy: 6.2 GeV and 3.3 GeV

Beam charge: 10-200 pC @100Hz, 28 ns 2-bunch time structure

Emittance: 0.4/0.2 mm mrad

➢Bunch length: from a 3 ps up to a few fs

Photon wavelength: 0.1-0.7 nm and 0.7-7.0 nm

- Turbo ICT (Integrating-Current-Transformer):
 - 4 in Aramis and 2 in Athos
 - 28 ns 2-bunch resolution
- Standard ICT (1 in the gun section):
 - full beam current integral (no 2-bunch discrimination)
- Cavity-BPM (Beam-Position-Monitor):
 - ~200 units distributed all along Aramis and Athos
- > Wall-Current-Monitor (WCM, 1 in the gun section):
 - coarse synchronization photocathode laser timing and RF gun phase
 - 2-bunch charge monitoring @100 Hz
- Faraday- Cup (one unit in the Gun section):
 - Dark current

Standard ICT (BCM-IHR readout electronics)

- time integration (5µs) of the beam induced current in the transformer
- Broad-band frequency response (kHz→10 MHz)
- no 2-bunch time structure resolution
- Sensitive to dark current of the gun
- Charge resolution ~ pC

Courtesy Bergoz

SwissFEL ICT: dual-bunch resolving

> Turbo-ICT2 (BCM-RF readout electronics)

- High frequency transformer (bandwidth up to several hundred MHz)
- Narrow band-pass filter centered at around 180 MHz (resonance quality factor reduced to discriminate the 2 bunch)
- Output signal is a resonance with amplitude proportional to the bunch charge
- Beam charge determined by measuring the apex of the resonance (sample-and-hold electronics)
- 28 ns 2-bunch time structure discrimination and immunity to dark current
- rms resolution 0.1 pC (1%) in the 10-200 pC SwissFEL charge range

Faraday Cup (FC)

➤The Faraday cup destructively intercepts the beam

Low current and dark current measurements

Systematic error in charge measurements:

- "Containment": mismatch between e.m. shower and absorber dimensions
- "Charge trapping": absence of voltage o magnetic "cage" to bring back secondary and scattered electron
- resistor signal coupled with DC component of input current

M. Dach et al. (SLS Linac) ; BIW2000

Wall Current Monitor in SwissFEL

Prototype Wall Current Monitor In WLHA $R_{gap} = 3.0 + /- 0.05 \Omega (2.83\Omega with 50\Omega)$ (12 x 36 Ohm gap resistors) NiZn ferrite ring

$$Q = \frac{1}{R_{gap}} \int V_{Rgap}(t) dt$$

SwissFEL Wall Current Monitor

After RF gun (z=0.58 m) **R_{gap} = ?** NiZn ferrite ring

Time integration window ~ 10 ns

Lower cutoff frequency $f_{low}=R_{gap}/2\pi L \sim 200$ kHz (no DC component of input current measurable) Upper cutoff frequency $f_{high}=1/(2\pi R_{gap} C) \sim G$ Hz good WCM \rightarrow flat transfer impedance Z(ω) $\sim Rgap$ in the frequency range of interest (up to hundreds of MHz) PAUL SCHERRER INSTITUT

CST Simulation WCM output (25 ps , 200 pC)

time response

- The Gaussian beam signal is distorted due to the upper cutoff frequency
- Voltage oscillations in the resistor (long time regime)

frequency response

- Approx. constant for f << 1 GHz
- Broad peak at 1.5 GHz
- Sharp peak at 4.7 GHz (voltage oscillations)

1.5 Gz peak → mismatch of the gap resistance and transmission line capacitive gap

4.7 GHz sharp peak \rightarrow step transition (radius) from the beam pipe to the gap

Charge Measurement in the simulation

PAUL SCHERRER INSTITUT

- The measured charge decreases.
 - No DC measurable. For infinite integration time, Q=0.
- The slope is determined by the lower cutoff frequency $f_{low} = \frac{R_{gap}}{2\pi L}$
- First few data points after bunch incidence include current components outside the WCM bandwidth (non measurable)

Idea: Make linear fit of slope and intersect fit with the step to reconstruct the charge at the time when the bunch arrives.

- Holdoff (2.5 ns) to avoid first few data points
- Fitted interval = 10 ns

Charge Measurement: the Ferrite Ring

- Dispersive ferrite yields charge losses, because we only measure the voltage over the gap
- > Which value of the gap resistance to be used for WCM charge measurement ?

SwissFEL WCM: gap resistance value?

Spare WCM prototype \rightarrow Multimeter inspection and VNA measurements of the reflection coefficient S11 at the output port confirmed a gap resistance Rgap=3.0 Ω .

SwissFEL WCM \rightarrow No inspection possible, VNA measurements of S11 \rightarrow Rgap=3.55 Ω .

- > Transfer impedance measurements of spare WCM in a test-bench (coaxial wire method):
 - Transfer impedance $Zt(\omega)$ constant up to several MHz \rightarrow $Z(\omega)$ ~Rgap
 - Confirmed reduction of 5-6% of the transfer impedance because of ohmic losses in the ferrite Zt(ω) = 2.68 Ω instead of 2.83 Ω.
 - estimate of the ohmic resistance of the ferrite ~50.50 Ω

$$Z(\omega) = \frac{V_{out}(\omega)}{I_{beam}(\omega)} [\Omega]$$

SwissFEL WCM transfer impedance $Zt(\omega)$?

Direct measurement of transfer function of the SwissFEL WCM not possible. Possible Solution:

- Replace the WCM currently installed at SwissFEL with the prototype WCM which is now fully characterized.
- Get Z_t from a CST simulation under hypothesis of two resistors disconnected and dispersive ferrite (Simulation parameters: Rgap = 3.31 Ω, 25 ps bunch length, Q = 200 pC)
- > to compensate ohmic losses in ferrite instead of Rgap = $1/(1/3.55+1/50) = 3.31 \Omega$, the best up to date estimate of the transfer impedance are:
- Rt \approx 3.26 Ω CST prediction (near-DC value of the curve)
- Rt \approx 3.11 Ω (spare WCM VNA measurements)
- CST prediction sensitive to the permeability model of the ferrite
- To date, optimistic estimate of the incertitude on the WCM calibration parameter (Rt) about +/-5%

SwissFEL WCM: waveform signal integration and charge results

200 pC (charge readout of first turbo ICT)

 $R_t = 3.26 \ \Omega$ (derived from SwissFEL WCM Zt simulation, considering dispersive ferrite)

We integrate a background signal. Slopes are approximately linear.

Still possible to measure the charge with our method using a linear fit! Adapted idea: We extrapolate the charge and background signal contribution back to the time where the bunch was incident.

Cavity Beam position Monitor (CBPM)

- Two cavity device
- Reference cavity is designed to get an output signal proportional to the beam charge (monopole mode).
- Dependence on beam position is negligible (TM010 mode).
- > We used:
- CBPM16 type (low-Q).
- CBPM8 type (high-Q)

Cavity BPM and charge measurement

BPM output signal measured with a 16GHz, 40Gs/s oscilloscope.

Bandpass filter at the BPM output to isolate the cavity fundamental mode (TM010) signal.

BPM type	TM010 frequency	Low-pass filter cutoff frequency
CBPM16	3.284 GHz	4.8 GHz
CBPM8	4.926 GHz	6.0 GHz

Voltage induced in the TM010 cavity mode and available at the cavity output port is:

$$V_{out}(t) = q\omega \sqrt{\frac{Z}{Q_e}R/Q}e^{-\frac{\omega t}{2Q_L}}\cos(\omega t)$$

(e.g. see : Cavity Beam Position Monitors, R. Lorenz)

q(charge); Z(50 Ω , impedance cavity output line); ω (frequency of cavity mode TM010); R/Q (parameter depending on cavity geometry); Qe (external quality factor); QL (loaded quality factor)

For every single BPM ω , Qe and QL have been measured with VNA. R/Q is estimated with reliable numerical codes (HFSS and CST, same result).

To better reproduce the measured signal, the expression above is also convolved with a low-pass filter function, same cutoff frequency as the filter used for measurements.

high Q (left) and low Q (right) BPM: waveforms measured with the oscilloscope and fit results

Beam charge measurements at SwissFEL

With respect to first ICT (~200 pC) about 20pC smaller mean charge readout from cavity BPMs:

Left (B1) → (10+/-3)%

Right (B1)→ (10+/-2)%

Left: Charge measurements (B1, B2) of cavity BPMs and closest ICT in ARAMIS and ATHOS (measurements not simultaneous)

Right: charge measurements (B1) of cavity BPMs in high energy part of ARAMIS compared with average value of charge readout from the first Turbo-ICT-2 at the gun

Beam charge measurements at SwissFEL

Simultaneous charge readouts of first cavity BPM and at the gun and the WCM for variable charge and three different gun settings: (1) Only bunch1; measured bunch 1 in presence of bunch-2; measured bunch-2 in presence of bunch-1.

Nominal charge	200pC	100 pC	10 pC
WCM/BPM bunch-2 only	1.0092	0.9773	1.0361
WCM/BPM bunch-1	1.0011	0.9770	1.0204
WCM/BPM bunch-2	0.9953	0.9819	1.0341

WCM transfer impedance

estimate Rt \approx 3.26 Ω (CST prediction)

In the case bunch-1 at 200 pC, the relative percentage difference of the charge readout of the 1st cavity BPM w.r.t. the 1st ICT is about:

(8+/-1)%

Conclusions and Outlook

≻WCM:

- experimental characterization (VNA) and numerical modelling (CST, HFSS) but still incertitude on the calibration (+/-5%, very optimistic).
- Further characterization needed to solve the incertitude
- Main problem: no VNA transfer function measurements possible in the SwissFEL WCM

Cavity BPM:

- New method developed and implemented at SwissFEL for absolute charge measurements
- Robust and statistically consistent reliability for charge measurements at SwissFEL
- The aggregate results of the campaign of measurements with cavity BPM give us a calibration reference for alignment of all the charge monitors in SwissFEL
- Calibration procedure of charge monitors for bunch-1: apply a correction factor (9+/-2)% to the charge readout measured by the first Turbo-ICT-2 at the gun and align all the other charge monitors under a condition of full transmission along the entire machine