
SECURITY CONSIDERATIONS IN DISTRIBUTED CONTROL SYSTEMS

Klemen Žagar, Jožef Stefan Institute and Cosylab, Ljubljana, Slovenia

Abstract

In recent years, a need appeared to distribute control sys-
tems of large experimental physical devices to participat-
ing laboratories across the globe [1]. Internet is the obvi-
ous choice for the communication medium that allows such
distribution. However, given the Internet’s public nature,
one must ensure that access to multi-billion-Euro devices
is appropriately secured. In this paper, security threats that
endanger distributed control systems are analyzed. Then,
guidelines are given on how, where and why to use tech-
nologies such as Secure Sockets Layer (SSL), Public Key
Infrastructure (PKI), Digital Signature and Access Control
Lists (ACL). Finally, we discuss security efforts we have
invested in our products (in particular the Advanced Con-
trol System – ACS, and Abeans) and in our infrastructure
(servers, web site, e-mail).

INTRODUCTION

During design of a control system, functionality that de-
termines which devices can be controlled is of prime im-
portance. Once this goal is found achievable, the non-
functional requirements of performance and scalability are
addressed. All of these are time consuming tasks, and once
done, there is usually not enough budget left to identify and
resolve security issues.

Security is often taken for granted. Under normal cir-
cumstances, people trust each other, and there seems to be
no need for taking any security measures. In truth, security
is a hinderance as it limits usability. Without it, entering a
room is just as simple as turning the door knob. Once in
place, key is needed to unlock the door, and security codes
have to be punched into the alarm system.

These days computers are highly networked. Viruses
and trojan horses are everywhere, and can spread across the
globe within minutes, if not seconds. If there is a weakness
that is not attended to, someone will exploit it.

Control systems for large experimental physics devices
are mission critical in a sense that if they fail to do their job,
a multi-billion Euro device is wasting its precious hours.
Since in the future, when remote control will be not only
fancy, but mandatory, the old way of securing the system
(physically disconnecting it from the rest of the world) will
no longer be satisfactory. Security issues will have to be
dealt with differently.

ACCESS CONTROL AND
AUTHENTICATION

From an abstract point of view, a system allows users
to perform operations on certain objects. For example, an

Figure 1: Access control is important: don’t allow every-
one to do anything! Thus, developers are usually not given
access to the actual controls, as they might inadvertently
cause serious damage.

operator would set the current of a power supply.
However, not all such triplets should be allowed. In fig-

ure 1, the developer should be prevented from setting the
current of an actual device, but should instead use a simu-
lated or test device.

To implement adequate access control, every action that
a user attempts to perform should be subjected to autho-
rization. Two authorization schemes are particularly wide-
spread:

• UNIX-style user/group/world read/write/execute priv-
ileges.

• Windows-style access control lists (ACL).

In many scenarios it turns out that UNIX-style authoriza-
tion is not flexible enough. Fortunately, filesystems exist
that overcome this difficulty on UNIX and Linux platforms
(e.g., the SGI’s XFS filesystem [2], and ext3 filesystem
with ACL support).

With authorization in place, the problem is reduced
to identifying the user in the triplet user/operation/object
(authentication). The users could be asked to identify
themselves by (user)name, but then misrepresentation as
someone else would be too easy. Typically, users identify
themselves with passwords, which can be technically done
in four flavors:

1. The system stores the password, and compares user’s
entry with what is stored. This method is very unse-
cure, and its use is not recommended.

2. The system stores a hash code of the password, and
compares hash codes. This way, it is impossible (or

Proceedings of ICALEPCS2003, Gyeongju, Korea

609

at least very hard) to obtain the user’s password if the
authentication database is accidentally disclosed.

3. The system stores the password (an encryption key),
and asks the user to encrypt a message with this key
(challenge). The response, once decrypted by the sys-
tem, must match original message. This prevents the
so-called replay attacks, where the attacker could re-
play the exact user’s input during authentication, and
steal his or her identity.

4. Same as method 3, except that the system stores the
public key for the user’s matching private key. This
way, the authentication data in the system can be dis-
closed without harm.

THREAT CLASSIFICATION

Before securing a system, threats must be thouroughly
understood. Failing to do so could lead to protecting too
much (e.g., using security technologies for their own sake,
or limiting usability), or too little.

Note that in the world of security, the weakest link prin-
ciple applies: no matter how many Navy Seals are protect-
ing your garage door, leaving a back window open will still
make your possesion an easy prey.

In this section, a threat classification scheme called
STRIDE [3] is presented. STRIDE is an acronym com-
posed of the first letters of threat types.

Spoofing Identity

The threat where an attacker could represent himself as
another user is called spoofing identity. Realization of this
threat could have severe consequences, especially if the
victimized user had many privileges.

To mitigate this security threat, consider the following:

• Don’t store secrets such as passwords unprotected
(e.g., in a world-readable file).

• Don’t store private keys and certificates unprotected.
Ideally, use smart cards and hardware security mod-
ules. Otherwise, protect these keys with passphrases
(a password that serves as an encryption/decryption
key for the private key, and is known only by the user).

• Use biometric authentication (fingerprints, pho-
tographs, voice, ...).

• Don’t transmit secrets over the network unprotected.
Avoid using POP3, IMAP, FTP, Telnet, and sending
passwords and credit card numbers over HTTP. Use
IMAPS, SFTP, SSH and HTTPS instead!

Tampering with Data

Critical data should be protected against unauthorized
modification (tampering). In control systems, the follow-
ing should be tamper resistant:

• Configuration files. If modified by inexperienced or
malicious personnel, the machine would become im-
possible to operate, or parts of it could even break
down.

• Logs. An attacker, in an attempt to cover up his
wrong-doings, should be prevented from modifying
the logs and thus purging all traces behind him.

To tamper-protect the data, a cryptographically secure
hashing function is applied over it, and both the data and
the hash are recorded. To verify integrity, hash is recal-
culated and checked. The following technologies address
data integrity issues:

• Hashing functions (the slightly insecure MD5, and
SHA1).

• Message Authentication Codes (MAC), where en-
crypted message is hashed to also verify authenticity.

• Secure Sockets Layer (SSL) and protocols above it
(HTTPS, SSL, ...).

• Digital signature (PKCS#11, XML Digital Signature,
Pretty Good Privacy – PGP, Secure Multimedia Inter-
net Extensions – S/MIME).

Repudiation

Repudiation refers to the ability of the data issuer to
deny that he had produced the data. The feature of
non-repudiation is particularly useful in legal proceedings,
where the author of a message must be established beyond
reasonable doubt.

The primary means of establishing non-repudiation is
through digital signatures.

Beware! Implementing digital signatures properly is a
complex issue, as it is not just a technical, but also a legal
problem. Issues such as certificate expiration and revoca-
tion must be addressed, so that the digital signature remains
valid, even though its issuing certificate had expired since
the signing took place.

Information Disclosure

Information disclosure occurs when confidential infor-
mation falls in the hands of someone, from whom it is sup-
posed to have been kept secret. This can happen in two
ways:

• Interception of data while in transit on the network.

• Acquisition of access to where the data is stored.

To counter the first case, encrypt the data while in transit.
Using SSL or a protocol based on it (SFTP, HTTPS) solves
the first issue well. For safe storage, encrypted file systems
and databases should be used.

Proceedings of ICALEPCS2003, Gyeongju, Korea

610

Denial of Service

When a system is subjected to a load that exceeds the
one for which it has been designed, two things can happen:

• The system becomes unresponsive, and its quality of
service is decreased significantly.

• The system breaks down.

Denial-of-Service attacks exploit this fact to render their
targets useless. They are launched from several sources,
which generate various kinds of requests on the victimized
system (for example, ping or web page requests).

The best way to defend against these is to set up a fire-
wall that filters inbound traffic. Also, most firewalls im-
plement a technique called throttling where traffic from a
given source is simply ignored if it is too frequent.

Elevation of Privilege

Elevation of privilege occurs when the attacker assumes
high privileges on the victimized machine (e.g., those of the
administrator/root). Such an attacker can do anything he
likes – including realizing all the other threats listed above.

Elevation of privilege can be exploited if the adminis-
trator’s password is compromised (i.e., through the spoof-
ing identity threat). More commonly, vulnerabilities in
installed networking services are taken advantage of. A
typical such vulnerability is the buffer overrun where the
attacker supplies a larger-than-expected input containing
code that the service actually executes.

THREAT MODELING

Information systems, including control systems, are con-
cerned with transmission and storage of data. Thus, the ad-
versary’s only means of attack is by manipulating the data,
either while in transit, or when stored. To better understand
the paths of data, a data flow diagram should be produced.

In a distributed control system, the following resources
have to be secured:

• Output channels to the controlled devices. Unau-
thorized users must not be allowed to manipulate de-
vices, as they might disrupt the operation of the facil-
ity, or, in the worst case, damage the devices.

• Input channels from the monitored devices. Unau-
thorized users should not be allowed to acquire control
data.

• Archive integrity. It should be impossible to remove
or alter the entries in the archive. Otherwise, mali-
cious users would be able to remove traces of their
activities.

• Network bandwidth and other resources. Unautho-
rized users should not be able to generate traffic on
the control system’s network, as they might abuse this
capability to overload the network and/or servers, and

thus issue a Denial of Service (DoS) attack on the con-
trol system.

SECURITY IN ACS AND ABEANS

The Advanced Control System provides infrastructure
for authorization and authentication. This is implemented
by the Manager, which checks whether a client is autho-
rized to access a component whenever it requests one. Cur-
rently, only basic username/password authentication is per-
formed.

To avoid buffer overruns and other pitfalls, the Standard
Template Library (STL) has been extensively used while
developing the C++ parts of the ACS. The remaining parts
of ACS are written in Java, where critical coding errors re-
sulting in possible exploits much are much less frequent.

On the client side, the Abeans framework has a plug
for Web Services based on Simple Object Access Proto-
col (SOAP). Since SOAP uses HTTP and/or HTTPS for
transport of data, secure authentication is integral part of
all Abeans-based applications.

In the future, we intend to add security reviews to our
software development process with the goal of eliminating
the majority of potential exploits and weak links before
they are detected or taken advantage of. Apart from that,
we are looking into adding encryption and digital signature
to the middleware (using CORBA Security), logging ser-
vice (for log non-repudiation) and the ACS’s Configuration
Database.

CONCLUSION

Networked computer systems are more vulnerable than
ever, as attackers can take advantage of them at any time,
from anywhere. This is particularly true if systems are dis-
tributed across the globe using the Internet. Therefore, se-
curity considerations must be taken into account when de-
signing, building and deploying them [4, 5].

Security issues should be identified already in the design
phase and mitigated. Technologies to achieve this are read-
ily available, and some of them have been briefly outlined
in this article.

REFERENCES

[1] R. Bacher, “The Global Accelerator Network - Globalisation
of Accelerator Operation and Control”, PCaPAC 2002, Fras-
cati, October 2002

[2] Silicon Graphics, “XFS”, http://oss.sgi.com/projects/xfs/

[3] M. Howard, D. LeBlanc, “Writing Secure Code”, Microsoft
Press, 2002

[4] H. Frese, “Security Planning from the Start” (talk), PCaPAC
2002, Frascati, October 2002

[5] D. Agarwal, “Supporting Secure and Scalable GAN Collab-
orations” (talk), Collaboration Tools for the Global Acceler-
ator Network (GAN) Workshop, August 26, 2002

Proceedings of ICALEPCS2003, Gyeongju, Korea

611

