
THE EVOLUTION OF THE GENERIC LOCK SYSTEM
AT JEFFERSON LAB*

B. Bevins† and Y. Roblin
Jefferson Lab, Newport News, VA 23606, USA

Abstract
The Generic Lock system is a software framework that

allows highly flexible feedback control of large
distributed systems. It allows system operators to
implement new feedback loops between arbitrary process
variables quickly and with no disturbance to the
underlying control system. Several different types of
feedback loops are provided and more are being added.
This paper describes the further evolution of the system
since it was first presented at ICALEPCS 2001 and
reports on two years of successful use in accelerator
operations. The framework has been enhanced in several
key ways. Multiple-input, multiple-output (MIMO) lock
types have been added for accelerator orbit and energy
stabilization. The general purpose Proportional-Integral-
Derivative (PID) locks can now be tuned automatically.
The generic lock server now makes use of the Proxy IOC
(PIOC) developed at Jefferson Lab to allow the locks to
be monitored from any EPICS Channel Access aware
client. (Previously clients had to be Cdev aware.) The
dependency on the Qt XML parser has been replaced with
the freely available Xerces DOM parser from the Apache
project.

INTRODUCTION
The low-level accelerator control systems at Jefferson

Lab are built with EPICS running on IOC front-end
computers. The “Slow Locks” are a group of programs
that implement feedback loops to stabilize various
machine parameters against disturbances at < 1Hz [1,2,3].
They come in various flavors and each lock type uses a
distinct server, GUI, and configuration format. Adding
new lock types has been difficult and time consuming.
Even adding new lock instances requires time from a
software developer.

A “Generic” Lock System has been developed at
Jefferson Lab [4] to integrate the Slow Locks into a
common framework with better performance that is more
easily maintainable and extensible. Because it is
configuration-driven rather than code-driven, it is more
flexible and can be reconfigured by non-experts while
running. This enables on the fly creation and
configuration of feedback loops using any available
control system I/O signals. Thus feedback loops can
easily be created as prototypes for new control ideas or to
satisfy temporary operational requirements with
absolutely no disruption of the existing control system
and no new programming effort required.

g

development for over two years with very positive results.
The Operations staff is very happy with the ability to
create new locks on demand. Many of these have
achieved permanent status as required parts of the control
system. The PID Locks have been enhanced and several
new lock types have been added to the system. The effort
to fully integrate the older systems is continuing.

SYSTEM DESIGN
The new lock system has been called “generic” because

of a few key features.

Server Architecture
The main component of the Generic Lock System is the

Lock Server. It is implemented in C++ using as a CDEV
(Common DEVice) Generic Server [5,6]. Generic
programming techniques have been used throughout (OO,
templates, STL, Design Patterns, etc.). Each lock object is
a virtual device that exposes a set of attributes containing
the lock’s operating parameters. Each lock type
completely defines its own characteristics, such as how
many inputs and outputs it has, how it is calibrated or
tuned, whether it can be created or deleted on the fly, etc.
All lock types share a common interface, so the same
server is used for all types and can host multiple types
simultaneously.

The Generic Lock Server presently handles general
purpose Proportional, Integral, Derivative (PID) locks as
well as the specialized current locks and several types of
helicity-correlated asymmetry locks. Several new types
are being added.

User Interface
The GUI for the slow locks is scripted in Tcl/Tk using

the TclCdev package. The GUI is not preconfigured. It
discovers all the locks dynamically. A Tk package has
been created to give all related GUI’s a consistent look
and feel.

Configuration Files
All configuration information is stored in an eXtensible

Markup Language (XML) file with a flexible structure,
and can be entered directly through the GUI. The
structure of the XML file is described in [4]. The format
is simple and flexible enough that there has been no need
to modify it as new lock types have been added. The
XML files are both parsed and written using the Xerces
Document Object Model (DOM) parser freely available
from the Apache Project [7].

*
†

Proceedings of ICALEPCS2003, Gyeongju, Korea
The system has been in use and under continuin

Work supported by the U. S. DOE, contract DE-AC05-84-ER40150.
bevins@jlab.org
43

The Proxy IOC
The Proxy IOC (PIOC) is an EPICS Channel Access

(CA) server running on a back-end computer [8]. It
allows other programs to dynamically create (“sponsor”)
soft PV’s, which the PIOC then serves to CA clients. The
Generic Lock Server optionally sponsors all of its virtual
device attributes as PV’s in the PIOC. This makes them
available to any CA aware client, e.g. display managers,
archivers, save and restore tools, etc. One drawback is
that communicating with the lock server only through
PV’s lacks the full expressiveness of CDEV’s
device/message model. Figure 1 shows the
communications process as the Lock Server uses the
PIOC.

Figure 2: The Asymmetry Lock GUI

The PID Locks
The use of CDEV as an underlying technology had

imposed another limitation on the system which has now
been addressed though the use of the PIOC. Previously,
dynamically created locks either had to have predefined
names (e.g., PIDLock01) or the server had to rewrite and
recompile the Device Definition Language (DDL) files
each time a lock was created on the fly. With CDEV
configured to fall through to Channel Access, the PIOC
allows dynamic discovery by clients of the new devices.

The functionality of the PID locks is derived from the
EPICS CPID record, extended to allow both the input and
output signals to be arbitrarily specified at runtime. Any
variable in the control system accessible through CDEV
can be used. This includes all CA signals as well as
signals from other CDEV servers, including model
servers and other locks.

For the lock input, the user can enter an algebraic
expression involving the names of up to 12 channels and
all the functions and operators available to the EPICS calc
record with the exception of the C conditional “?:”. This
is disallowed since colons frequently appear in PV names,
creating a parsing ambiguity. For example the string “1–
0.5*exp(CTD1242.VAL–CTD1248.VAL)” could be
entered as the lock input “variable”. A second such
expression can be entered that will disable the lock when
it evaluates to logical false.

Sponsor API
(create PV’s)

PIOC
Server

PV1
PV2
PV3
…

CDEV
Lock

Server

Lock1
Lock2
…

Channel
Access ClientsCDEV

Clients

Channel Access
(monitor, set)

CACLIP
An addition to the PID Lock functionality is the ability

to designate the input as periodic with a specified period.
The error between setpoint and input value is calculated
modulo this period. For example, if an input is specified
to have period 360 and a setpoint of 175, then an input
value of -175 gives an error (setpoint – input) of –10
instead of +350.

Automatic Tuning of PID Locks
Determining appropriate gains for PID controllers is a

non-trivial task. To make the PID Lock class more usable
by non-experts it is desirable to automatically determine
appropriate PID gains for optimum stability, if they exist.
Automatic PID tuning is still experimental and not in
production use. Two methods are provided for testing.

Figure 1: Use of the Proxy IOC

NEW AND ENHANCED LOCK TYPES
Multiple Input/Multiple Output Locks For processes with simple dynamics where the main

goal is disturbance rejection, a static gain measurement is
performed. Most slow locks used by the accelerator are of
this type since accelerator dynamics are typically much
faster than the time scale over which the slow locks
operate, giving them effectively instantaneous
proportional response.

The MIMO locks implemented so far are for managing
the helicity-correlated asymmetries of the electron beam
for parity experiments. 2x2 locks are in use now, with 3x3
and 5x5 locks being tested. The 2x2 local orbit locks and
the highly over-determined energy locks are currently
being integrated into the Generic Lock framework as
well. For processes with richer dynamics on the slow lock

time scale, the Ziegler–Nichols frequency response
method is used [9]. A relay feedback experiment is
performed to determine the ultimate point on the Nyquist
curve, with relay hysteresis set automatically from the

The Asymmetry Lock GUI is shown in Figure 2. It
presents a view nearly identical to that of the PID Lock
GUI in [4]. The lock shown expanded has a vector input,
a 2x2 gain matrix, and a vector output.

Proceedings of ICALEPCS2003, Gyeongju, Korea

44

process+measurement noise. This works reasonably well
for process dynamics up to second order. This tuning
method is provided primarily for use by the Cryogenics
Group.

FUTURE DIRECTIONS

Additional Lock Types
The legacy orbit and energy locks are presently being

integrated into the Generic Lock framework. This extends
the system to allow for locks to be calibrated at runtime
and to use the on-line accelerator model server for
calibration. A spin-off of this effort is the creation of
general purpose MIMO locks of arbitrary size than can be
created and configured on the fly.

PID Lock Tuning
Automatic tuning of the PID Lock gains will be

improved and become the standard way of configuring a
newly created lock. This will require better
characterization of the process dynamics than the simple
relay feedback experiment provides. This could be
achieved by simple modifications to the procedure to
obtain additional points on the Nyquist curve.

Server Security
There is still a security issue with the Generic Lock

Server. The CDEV Generic Server has no built-in security
model. This means that any user connected to the
accelerator network can write to the virtual attributes of
the lock devices and create a lock that writes to any
channel in the system, effectively circumventing CA
security. The strategy to attack this problem has changed.
Rather than add a security layer to the server itself, tighter
integration with the PIOC will allow its CA security to
protect the lock server.

Dynamic Linking
Dynamic Linking of lock types with the server is still a

goal. Following the model that CDEV uses with its
service classes, the code for individual lock types could
be dynamically loaded as needed. This will allow
completely new types of locks to be added to a running
server without even restarting it, much less rebuilding it.

Other Extensions of the Framework
The Generic Lock System framework will be gradually

extended to include non-feedback accelerator setup tools
to bring the benefits of common look and feel and easier
maintainability.

INFRASTRUCTURE
Though some of the lock types are specialized for

Jefferson Lab, the general purpose PID Locks and the
forthcoming general purpose MIMO locks are flexible
enough to be useful elsewhere. Developing new lock
types to add to the framework is also quite easy. Building
and using the system requires the following elements, all
of which are freely available:

• CDEV including the Generic Server extension
• A CDEV service supporting the underlying control

system. (EPICS, TINE, ADO, CLD/SLD, etc.)
• Xerces, the XML DOM parser from Apache
• Tcl/Tk with TclCdev
• The Proxy IOC (optional) form Jefferson Lab

REFERENCES
[1] M. Bickley, B. A. Bowling, D. A. Bryan, J. van

Zeijts, K. S. White and S. Witherspoon, “Using
Servers to Enhance Control System Capability”,
Proceedings of PAC 1999, New York.

[2] J. van Zeijts, S. Witherspoon and W. A. Watson,
“Design and Implementation of a Slow Orbit Control
Package at Thomas Jefferson National Accelerator
Facility”, Proceedings of PAC 1997, Vancouver.

[3] A. Hofler, D. Bryan, L. Harwood, M. Joyce and V.
Lebedev, “Empirically Determined Response
Matrices for On-line Orbit and Energy Correction at
Thomas Jefferson National Accelerator Facility”,
Proceedings of PAC 2001, Chicago.

[4] B. Bevins and A. Hofler, “A Distributed Feedback
System for Rapid Stabilization of Arbitrary Process
Variables”, Proceedings of ICALEPCS2001, San
Jose, CA.

[5] J. Chen, G. Heyes, W. Akers, D. Wu and W. Watson,
“CDEV: An Object-Oriented Class Library for
Developing Device Control Applications”,
Proceedings of ICALEPCS95, Chicago.

[6] W. Akers, “An Object-Oriented Framework for
Client-Server Applications”, Proceedings of
ICALEPCS97, Beijing.

[7] The Apache Project, “The Apache XML Project”,
http://xml.apache.org.

[8] J. Sage, “Proxy IOC & CA NameServer Update”,
EPICS Collaboration Meeting, Fall 2002, Berlin.

[9] K. J. Åström and T. Hägglund, PID Controllers:
Theory, Design, and Tuning, 2nd ed., Instrument
Society of America, 1995.

Proceedings of ICALEPCS2003, Gyeongju, Korea

45

	THE EVOLUTION OF THE GENERIC LOCK SYSTEM �AT JEFFERSON LAB*
	INTRODUCTION
	SYSTEM DESIGN
	Server Architecture
	User Interface
	Configuration Files
	The Proxy IOC

	NEW AND ENHANCED LOCK TYPES
	Multiple Input/Multiple Output Locks
	The PID Locks
	Automatic Tuning of PID Locks

	FUTURE DIRECTIONS
	Additional Lock Types
	PID Lock Tuning
	Server Security
	Dynamic Linking
	Other Extensions of the Framework

	INFRASTRUCTURE
	REFERENCES

