
NEW CAPABILITIES OF THE EPICS IOC SHELL*

W. Eric Norum#, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract
The Experimental Physics and Industrial Control

System (EPICS) is used at research facilities around the
world as the basis for controlling equipment such as
particle accelerators, beamlines, and telescopes. Using
EPICS 3.14, it is now possible to run Input/Output
Controllers (IOCs) on a wide range of hardware and
operating system platforms. User interaction with these
operating-system-independent EPICS applications takes
place through the IOC shell. This presentation highlights
some of the recent changes made to the IOC shell that
provide a more powerful and flexible user interface.

INTRODUCTION
EPICS [1] is a collection of software tools developed

collaboratively that can be integrated to provide a
comprehensive and capable control system. Most servers
are implemented with EPICS iocCore, a set of real-time
software tools designed to run on Input/Output
Controllers (IOCs). IOCs are networked computers that
provide the direct interface to the technical equipment.

Up to and including EPICS release R3.13, the term
‘IOC’ implied a VME processor running the vxWorks
real-time operating system. With the release of EPICS
R3.14 these limitations have been removed [2-4]. Now
an IOC can also be a Linux PC, a Windows PC, an OS X
Macintosh, a Solaris Sun, an HPUX Hewlett-Packard, or
a variety of embedded processors using RTEMS [5].

This greatly increases the range of EPICS applications
and makes EPICS an attractive solution to the controls
needs of even small laboratories and individual beamline
developers.

EPICS applications running on vxWorks use the
vxWorks shell to read the application startup script
(st.cmd) and to provide for interactive entry of diagnostic
and debugging commands. The IOC shell provides
similar functionality on non-vxWorks platforms. It was
first released as a simple command interpreter capable
only of reading simple st.cmd startup scripts and
providing limited interactive operation.

COMMAND EDITING/HISTORY
Shortly after the initial release of the IOC shell the need

for more capable interactive operation became clear. The
ability to edit command lines during entry and to review,
modify, and reenter previous commands were the most

commonly requested additions. The IOC shell has been
modified to optionally use one of two mechanisms to
provide these capabilities. The two mechanisms available
are the GNU readline library [6] and the tecla command-
line library [7].

The GNU readline library provides a set of functions
for use by applications that allows users to edit command
lines as they are typed. Both Emacs and vi editing modes
are available. The readline library includes additional
functions to maintain a list of previously-entered
command lines, to recall and perhaps reedit those lines,
and perform csh-like history expansion on previous
commands.

The tecla library provides UNIX and LINUX programs
with interactive command line editing facilities similar to
those of the UNIX tcsh shell. In addition to simple
command-line editing, it supports recall of previously
entered command lines.

For various reasons neither of these packages is
distributed with EPICS nor enabled by the distributed
configuration build rules. The problems associated with
the libraries are:

• Readline is distributed under the terms of the GNU
Public License.

• Libtecla is not bound by such restrictive licencing
terms but has a flaw in that diagnostic output
produced by other threads when the IOC shell is
waiting for input will appear garbled. In
particular, newlines are not converted to carriage-
return/newline pairs.

• Each package is quite large. For example, on the
Intel x86 architecture EPICS IOC applications
built with readline support are over 150 kbytes
larger than those built with no command-line
editing or history.

However, if these difficulties are not insurmountable
for a particular institution or application, either package
provides a convenient and powerful mechanism with
which to interact with EPICS IOC applications.

The choice of command-line input support is made by
adding

COMMANDLINE_LIBRARY=READLINE

or

COMMANDLINE_LIBRARY=LIBTECLA

to an EPICS configuration file and then rebuilding the
iocCore libraries. This overrides the default value of ______________________

*The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government
#norume@aps.anl.gov

COMMANDLINE_LIBRARY=EPICS

that provides the limited interactive operation of the
original IOC shell distribution.

The prompt string for interactive operation is taken
from the IOCSH_PS1 environment variable. If a

Proceedings of ICALEPCS2003, Gyeongju, Korea

60

command-line editing library is used, the amount of
command history is set by the IOCSH_HISTSIZE
environment variable. The default values for these
parameters are ‘epics> ’ and 50 lines, respectively.

The IOC shell distributed with the most recent release
of EPICS (R3.14.4) uses the vxWorks ledLib library to
provide command-line editing and command history on
vxWorks platforms as well. With this addition some form
of command-line editing and history is now available for
EPICS IOC shell operation on all platforms.

MACRO EXPANSION
To assist the development of “shrink-wrap” EPICS

applications that can be distributed and used without
requiring editing of the distributed startup scripts or
recompiling of the application code, the IOC shell has
been modified to expand environment variables on input
command lines. Once a line of input has been input,
character sequences of the form $(var) or ${var} are
replaced with the value of the var environment variable.
There is no expansion inside single quotes or following a
backslash.

The application build process creates an envPaths file
with declarations formed from the configure/RELEASE
parameters. The IOC shell epicsEnvSet command is used
to set the environment variable values.

epicsEnvSet(IOC,“iocmyExample”)
epicsEnvSet(TOP,“/home/enm/myExample”)
epicsEnvSet(EPICS_BASE,“/home/enm/EPICS/base”)
.
.

This file is read by the startup script and thus makes the
values of all the release parameters available for use by
other startup script commands.

Indirect macro definitions are also allowed. The
following example passes ‘arg1’ to the first dbpr
command and ‘arg2’ to the second even though both are
invoked with the same argument:

epicsEnvSet var1 ‘${var2}’
epicsEnvSet var2 arg1
dbpr ${var1}
epicsEnvSet var2 arg2
dbpr ${var1}

Note the use of single quotes to inhibit macro expansion
in the first environment variable assignment. This defers
the expansion until the var1 macro is next processed.

As shown in Table 1, the addition of macro expansion
capability to the IOC shell has a very small effect upon
the memory footprint of an EPICS application. The very
small increase in memory usage is a result of the IOC
shell macro expansion performed using the macLib macro
expansion routines already present in iocCore.

Environment variable macro expansion is built into the
IOC shell regardless of the command-line input
mechanism in use.

Table 1: Application Size Increase Resulting from
Addition of Macro Expansion

Architecture Increase (bytes)

Linux 690

Solaris 2055

Darwin 1113

DIAGNOSTIC VARABLES
It is no longer necessary to declare and register a full

IOC shell command to gain access to diagnostic variables.
To make a variable available now requires only the
following steps:

• Include the epicsExport header file in the C file
where the variable will be used:

#include <epicsExport.h>

• Declare the variable in the C source file where it
will be used:

static double myParameter;

• Export the variable from the C source file:

epicsExportAddress(double, myParameter);

• Declare the variable in an application database
definition file:

variable(myParameter, double)

Once the above steps have been taken, the variable can be
accessed from the command line using the IOC shell

var [name [value]]

command. If both arguments are present, the specified
value is assigned to the named variable. If only the name
argument is present, the current value of that variable is
printed. If neither argument is present, the names and
values of all variables registered with the shell are
printed.

Integer variables are also supported. The only change
is to replace the ‘double’ keywords with ‘int’. For
example, to make an integer debugging level variable
available, the C source file would contain:
 .
 .
 #include <epicsExport.h>
 .
 .
 static int gpibDebugLevel;
 epicsExportAddress(int, gpibDebugLevel);

and the application database definition file would contain:

 variable(gpibDebugLevel, int)

Proceedings of ICALEPCS2003, Gyeongju, Korea

61

which could be shortened to

 variable(gpibDebugLevel)

since a missing type is taken to be ‘int’.

CONCLUSION
The additions described in this paper have greatly

increased the utility and power of the IOC shell.
Although the IOC shell was conceived to provide
command-line input capability to non-vxWorks IOC
applications, the power and flexibility now offered by the
IOCS shell have led to its use even on vxWorks
platforms. The command-line macro expansion
capability in particular has proven to be a great asset in
simplifying the deployment of EPICS IOC applications
on vxWorks and non-vxWorks platforms.

REFERENCES
[1] http://epics.aps.anl.gov/
[2] M. Kraimer, “EPICS: Porting iocCore to Multiple

Operating Systems,” ICALEPCS’99, Trieste, Octo-
ber 1999, 33-35, 2000.

[3] M.R. Kraimer, J.B. Anderson, J.O. Hill, W.E.
Norum, “EPICS: A Retrospective on Porting iocCore
to Multiple Operating Systems,” ICALEPCS’01, San
Jose, California, November 2001, 238-240, 2002.

[4] R. Lange, J.B. Anderson, A.N. Johnson M.R.
Kraimer, W.E. Norum, L.R. Dalesio, J.O. Hill,
“EPICS: Recent Developments and Future
Perspectives,” these proceedings.

[5] W.E. Norum, “EPICS on the RTEMS Real-Time
Executive,” Proceedings of SRI2001, Madison,
Wisconsin, August 2001, American Institute of
Physics, Review of Scientific Instrumentation,
January 2002.

[6] http://www.gnu.org/directory/readline.html
[7] http://www.gnu.org/directory/libs/libtecla.html

Proceedings of ICALEPCS2003, Gyeongju, Korea

62

	NEW CAPABILITIES OF THE EPICS IOC SHELL*
	INTRODUCTION
	COMMAND EDITING/HISTORY
	MACRO EXPANSION
	DIAGNOSTIC VARABLES
	CONCLUSION
	REFERENCES

