
COMMON TEMPLATE AND ORGANISATION FOR CERN BEAM
INSTRUMENTATION FRONT END SOFTWARE UPGRADE

A. Guerrero, S. Jackson,
CERN, Geneva, Switzerland

Abstract
To enable the use of PS and SPS as LHC injectors,

and to comply with the standards and directives laid
down by the CERN Accelerator Controls group
(AB/CO), most of the existing software associated with
Beam Instrumentation required re-engineering. Faced
with the magnitude of this software upgrade task and
the necessary new developments, we designed a set of
internal rules, generic tools and templates. These
facilitate, and in some cases automate, the development
of the entire software chain from the real-time to the
user interfaces. The benefits of our approach, and
results obtained so far, have been assessed by AB/CO
and our framework is now considered as the starting
point to develop the CERN accelerator standard for
front-end software. This initial project and its first
applications will be presented.

INTRODUCTION
Historically, CERN has relied heavily on computing

technology to provide the control system and
instrumentation necessary for controlling its complex
operation.

The recent need to (re) develop many systems for the
LHC era prompted the ‘Beam Instrumentation
Software Common Template & Organisation’
(BISCoTO [1]) project, which aimed to provide a
flexible environment, allowing the rapid creation of
common generic real-time systems.

REAL-TIME SERVER ARCHITECTURE
Over the years, many programming languages have

been used in AB/BDI (CERN Beam Diagnostic and
Instrumentation Group) [2]. Real-time servers have
been developed with languages such as Modula 2, C or
C++. Based on available resources, it was decided that
servers would be developed in C, and corresponding
Graphical User Interfaces (GUI) in Java. C was chosen
because C++ was not mature enough on our LYNXOS
2.5.1 version and also because some future framework
users were not ready for C++.

Real-time servers in AB/BDI have been
implemented using varying architectures. To
standardise, the BISCoTO skeleton architecture was
devised, encapsulating as many generic features as
possible whilst minimising system specific features to
avoid redundancy. The aim was to give developers an
operational real-time server, which requires tuning for
an instrument’s needs. Figure 1 shows the skeleton’s
architecture, and the processes (indicated by ovals)
involved. Inter-process communication is via message

queues and shared memory. Using a process-based
architecture rather than threads simplified diagnostics and
maintenance and allowed each subsystem to be developed
by different team members. On the other hand, the use of
message queues implied an additional overhead between
subsystems sharing information. This burden was
considered acceptable, but care was taken to minimise the
effects of these overheads.

Message queues & shared memory

creator

acq1

timing

acqN

driver driver

comms

logging

disp

hardware hardware
Figure 1: Real-time architecture.

The Creator process
The creator is charged with starting all processes in a

specific order. In order to synchronise the launching
sequence, the creator is informed by the launched processes
of their readiness via a flag in shared memory. Once the
process has been created, it is surveyed in case of abnormal
termination. Should this happen, the creator may restart the
process depending on its configuration.

The Dispatcher (disp) process
The dispatcher acts as an intermediary for forwarding

messages to one or more processes. For example, if 2
acquisition processes need to be informed of an event from
the timing process, they could subscribe directly. Instead,
they subscribe to the dispatcher, which makes a single
subscription on their behalf. The advantage of this
dispatcher layer is the possibility for a task to subscribe to
events coming from entirely different event sources (i.e.
machine timing, specific hardware, user command) and
‘block wait’ for all these in one call.

The Comms process
This process manages all clients’ requests for data or

actions from the BISCoTO server.

Comms API

Client

Middleware
Comms API

Comms process

Middleware

Server code Request code
Figure 2: Detachment of client and server request from

middleware by intermediate API

Proceedings of ICALEPCS2003, Gyeongju, Korea

166

The comms process was designed so that the request
code, i.e. the server code that handles the client’s
request, is detached from the middleware on which the
request was made. This allows any BISCoTO system
to be migrated to any middleware without
modifications to the server’s code. We achieved this
via an intermediate ‘middleware neutral‘ API as shown
in fig 2. To introduce a new middleware, a new
Comms process is written for all systems, hooking into
their request code. Detaching the code from the
middleware also gives the possibility to start several
Comms processes simultaneously, allowing the
benchmarking of different middlewares, as well as
providing several communication mediums in case a
particular middleware fails or legacy constraints. At
present Comms processes exist for SLEquip [3], CMW
[4], and raw TCP/IP.

The Logging process
To make sense of asynchronous logs from a real time

multiple-process architecture, logging needs to be
controlled. Writing to log files is a lengthy operation
that can’t be afforded by real-time processes.
Buffering messages and flushing later is okay, but the
death of a process could result in the loss of
information. The logging process was created to solve
this by providing a mechanism for processes to log in a
fast reliable way. A process opens a log instance in
shared memory, containing the various attributes, such
as verbosity, filename, maximum file size, etc. To log,
the message and a pointer to this log information is
sent via a message queue. The dedicated logging
process (running at low priority), then writes to the file
when CPU time is available.

A standardised log message format, allowing 4
logging levels (‘Status’, ‘Warning’, ‘Non-Fatal’ and
‘Fatal’), and time-stamping was created. The
‘LogController’ GUI, is then used to explore ‘logs’
known to a system’s logging process. With the
standard log format, the GUI can filter one or several
merged logs based on severity or keywords. The GUI
can also instruct the logging process to discard
messages with a severity lower than a given level, thus
allowing run-time verbosity control.

The Timing and Acquisition (acq) processes
To synchronise with the beam in SPS, the software is

driven by events from the SPS timing network. A
BISCoTO system typically has one or more acquisition
processes, each driven by these events. The skeleton
has one such acquisition process, set up to respond to
common SPS events, in which the developer can place
instrument specific code. The ability to create multiple
acquisition processes also allows a BISCoTO system to
potentially control several pieces of hardware with
dedicated processes.

THE CONFIGURATION GUI
To avoid modifications to the skeleton, all processes are

data driven. The template is written in C, so uses structs to
handle data. Historically, clients were also written in C so
the same structs where referenced. Referencing these
structures from Java however, is not possible, so an
intermediary standard was devised to allow the mapping of
data between C and Java classes. The configuration GUI
handles the definition creation and the automatic generation
of code mapping data between C and Java.

Limiting the number of data types
Before standardising the definitions, the number of data-

types in a definition had to be reduced. Data types available
only in C such as unsigned types were eliminated, whilst
other types, like enumerations were standardised. Some new
types allowing bit-wise manipulation were also created,
ultimately based on shorts and ints.

The definition GUI
The developer uses this Java GUI to create and customise

definitions for their system. If definitions change, the GUI
recreates the corresponding C/Java code. With this
automation, a server can be built with the skeleton, a library
generated by the GUI (for data management and
manipulation using dynamic querying) and user code for
accessing the hardware. This allows the template code to
remain generic, and maintainable by all.

The Standard configuration editor
The majority of configuration settings must be entered by

the user, and read by the system on initialisation. The
extension of the definition GUI to include a generic data
input tool seemed logical as all data was defined in a
standard way. The data input GUI, consists of a data driven
table for modification of configuration data, with file
selection via a tree populated with all known data files. The
definition not only allows the determination of column
names and maximum records for the table, but also allows
generic data validation to be incorporated. The resulting data
entry tool is both powerful, and more importantly free to the
developer.

Special definitions and Actions
Most servers perform actions that often require

parameters, and sometimes return composite data types.
Developers have historically implemented their actions in an
ad-hoc way, providing an API and documentation for clients.
To standardise this, BISCoTO servers extend the data
definition concept to trigger actions. Using a predefined
action naming convention, the developer can define their
actions, along with further definitions specifying
input/output parameter formats, thus allowing the
corresponding code generation.

Versions and advanced data management
The automatically generated libraries are released under a

new version when a definition changes. This allows
definitions (and corresponding data) to be changed without

Proceedings of ICALEPCS2003, Gyeongju, Korea

167

affecting systems relying on the old definition. This is
necessary when the developer needs to work on their
server, whilst an operational instance of the server
exists. Without versioning, a simple change in a
definition could have side effects on the operational
servers.

As well as freezing definitions, the freezing of data
using ‘states’ is also available. A state is effectively a
snapshot of all configuration data at a point in time that
can be restored later. States are used in systems where
configuration depends on different beam types in the
SPS.

HARDWARE AND DRIVERS
Access to hardware is normally made in the

acquisition process via a driver. It was clear that a lot
of the driver code for accessing hardware registers
could be generated from a BISCoTO definition.
Automating the driver creation not only reduced the
amount of bugs in drivers, but also gave other
developers a standard description of the device without
examining hundreds of lines of code.

Having defined the driver’s registers, the developer
runs a program that generates and compiles the
appropriate code for the driver and its access library.

NAVIGATION BY PROPERTIES AND
ACTIONS

The generated Java code follows a convention
similar to that defined by Sun’s Java Bean convention,
meaning run-time exploration of a class via ‘get’ and
‘set’ methods is possible. This was exploited to
provide a 100% data driven exploration tool (the
navigator), which needs only the location and
middleware ID to begin exploration. The skeleton has
built in actions allowing interrogation of available
properties and actions. Building a tree until it reaches
a leaf, the navigator dynamically loads the Java classes
that build panels allowing the getting and setting of
properties. If the leaf is an action, the parameter
classes are loaded and used to construct input/output
panels for the action. Like the data input tool, the
navigator is available free for all BISCoTO systems.

Replacing the hundreds of test programs created for
systems in the past, the Navigator has been developed to
include many features such as graphing and interaction with
MS Excel. As the tool is generic, all these features are
available to all systems developed under BISCoTO.

CONCLUSION
The BISCoTO project had to provide a powerful and

generic framework in which a developer could rapidly
develop a server. This has been achieved by making a
generic template which is almost completely data driven.
The project has exploited the data driven nature of the
systems further, by producing free generic tools for the
developers and users of BISCoTO systems. This product
received an immediate success. It has been operationally
used for every new BDI developments.

The pertinence and potential of the product is now such
that it has been selected by AB/CO to be the best starting
point for the Divisional standard for front end software
development. This new architecture [5], named FESA for
Front End Software Architecture, now fully object oriented
with server framework in C++, is currently being designed
and prototyped by a joint-team comprising both AB/BDI and
AB-CO engineers. Its first version will be delivered to the
equipment group developers in November 2003 and
deployed operationally on several front-ends in the LHC
injector chain in 2004.

REFERENCES
 [1] http://sl-div-bi-sw.web.cern.ch/sl-div-bi-sw/

Activities/GenPurp/ForUs/BISCoTO/entry.htm
[2] http://sl-div-bi.web.cern.ch/sl-div-bi
[3] http://slwww.cern.ch/~pca/equip/sl4/dum.html
[4] Kris Kostro, Jens Andersson, Steen Jensen, Franck Di

Maio (CERN) N. Trofimov (IHEP, Protvino, Moscow
Region):” The Controls Middleware (CMW) at CERN -
Status and Usage” (these proceedings)

[5] M. Arruat, A. Guerrero, J-J. Gras, S. Jackson, M.
Ludwig, J-L. Nougaret (CERN): “CERN Front End
Software Architecture for Accelerator Controls” (these
proceedings).

Proceedings of ICALEPCS2003, Gyeongju, Korea

168

http://sl-div-bi-sw.web.cern.ch/sl-div-bi-sw/Activities/GenPurp/ForUs/BISCoTO/entry.htm
http://sl-div-bi-sw.web.cern.ch/sl-div-bi-sw/Activities/GenPurp/ForUs/BISCoTO/entry.htm

	COMMON TEMPLATE AND ORGANISATION FOR CERN BEAM INSTRUMENTATION FRONT END SOFTWARE UPGRADE
	INTRODUCTION
	REAL-TIME SERVER ARCHITECTURE
	The Creator process
	The Dispatcher (disp) process
	The Comms process
	The Logging process
	The Timing and Acquisition (acq) processes

	THE CONFIGURATION GUI
	Limiting the number of data types
	The definition GUI
	The Standard configuration editor
	Special definitions and Actions
	Versions and advanced data management

	HARDWARE AND DRIVERS
	NAVIGATION BY PROPERTIES AND ACTIONS
	CONCLUSION
	REFERENCES

