
LINUX/PCI: THE ESRF BEAMLINE CONTROL SYSTEM 
MODERNISATION 

A. Homs-Purón, D. Beltrán, A. Beteva, M. C. Domínguez, P. Fajardo, A. Götz, J. Klora, 
E. Papillon, M. Pérez, V. Rey, ESRF, BP 220, F-38043 Grenoble Cedex, France 

Abstract 
The ESRF control system was developed more than 10 

years ago, using VME Motorola 68000 CPUs with OS/9, 
connected to control HP/Sun workstations (WS) through 
TACO. Needs of faster experiments and change to sup-
ported hardware require the modernisation of beamline 
(BL) control. Industrial PCs with Pentium III CPUs run-
ning Linux have been chosen as main control PCI crates. 
Support of current VME instrumentation is ensured 
through PCI/VME bus couplers; cPCI crates can also be 
controlled by PCI/cPCI bus extenders. TACO/TANGO is 
used to export the instrumentation control through the 
network. This system is very flexible in terms of configu-
rations; it can control a simple BL from a single PC, and 
it can fit more complex experiments with dedicated 
PCI/cPCI crates controlled by a client WS. Fast acquisi-
tions are implemented with a soft real time, kernel-based 
mechanism called Hook, which allows simultaneous read-
ing of PCI, cPCI and VME cards. SPEC is used as main 
control application, now featuring a server mode that al-
lows PyQt GUIs to easily access the hardware from a 
higher level. 

INTRODUCTION 
The ESRF beamline (BL) control system is based on 

VME Motorola 68000 (M68K) CPUs running OS/9, con-
trolled by HP/Sun workstations through TACO, a net-
work-based client/server environment developed in-house 
for the machine control. Such a system, based on the 
state-of-the-art technology more than ten years ago, needs 
to be upgraded to fulfil the demand of much faster ex-
periments and the integration of modern hardware. 

HARDWARE IMPLEMENTATION 
The evolution of the BL control system includes the 

upgrade of both the hardware and software architectures. 
Industrial PCs, featuring high performance Intel x86 
workstations, have been chosen as the main control plat-
form due to their strong support and the high availability 
on the market of PCI-based devices. This environment 
provides very interesting cost/performance ratios. The 
compatibility with the current instrumentation is ensured 
through the use of commercial PCI/VME bus couplers, 
allowing the smooth introduction of the system into the 
BLs. The fiber optic link of up to 35 m long used by these 
bus couplers permits the control of distributed crates. 
This, together with the possibility of controlling several 
crates from the same PC, simplifies its introduction in the 
BLs and reduces the costs of the transition. The system 
also supports the industrial cPCI platform, either as stand 

alone systems or as slave crates of the PCI workstations 
by means of PCI/cPCI bus extenders.  

One of the more important features of this architecture 
is its flexibility: it does not require the network for simple 
and time-critical applications, and, at the same time it 
supports distributed system for more complex configura-
tions.  

SOFTWARE STRUCTURE 
Operating system and drivers 

Linux has been selected as the control operating system 
because it is stable, open and free. It offers a strong de-
veloping community and a growing number of companies 
supporting it, resulting in an increasing amount of hard-
ware that it can control. In addition, the software mainte-
nance is simplified because of the unification to the other 
UNIX control operating systems at the ESRF. 

The Linux drivers of the VME boards offer, in general, 
more functionality than the obsolete OS/9 implementa-
tion, and they can deal with a disconnection of the VME 
crate, allowing easy hardware maintenance. This is done 
through a common interface, developed to keep transpar-
ent the real mechanism to access the VME bus [1]. As a 
result, the same driver codes works for Intel x86 with bus 
coupler, M68K VME and PPC VME; the porting to Intel 
x86 VME is in progress. 

Driver configuration and start-up tools notably simplify 
installation and maintenance. A GUI-based application 
manages the PCI, cPCI and VME devices, including bus 
couplers/extenders. For PCI/cPCI, the system keeps track 
of the slots on which the cards are connected, based on a 
database of known crates and back-planes. This mecha-
nism overcomes the problem associated to PCI board 
enumeration, which causes the identification number of 
board to change when another of the same type is 
added/removed in a slot closer to the PCI host. In the case 
of VME bus couplers, this changes the crate number; in 
cPCI bus extenders it changes the sub-bus enumeration. 

Middleware 
The next layer in the software architecture is 

TACO/TANGO, which basically exports the hardware 
functionality over the network, and at the same time, en-
capsulates the device in an intelligent remote object. It’s 
implemented through device servers, originally developed 
in Object In C (OS/9), and later ported to C++. A new 
TACO framework that exploits the C++ capabilities pro-
vides a higher device abstraction and a uniform interface 
for developers, including high throughput debug, start-
up/clean-up, compound (complex) devices, etc. For in-
stance, all VME devices inherit the functionality for 

Proceedings of ICALEPCS2003, Gyeongju, Korea

172



automatic reconfiguration when the VME crate is discon-
nected, making such event transparent for the higher lay-
ers in most of the cases. Such an interface will simplify 
the transition to the new TANGO architecture, completely 
based on the object-oriented paradigm [2]. 

Control application layer 
The main control application in the system is SPEC, 

which has proved a very flexible control of an appreciable 
amount of hardware. One important improvement is its 
server mode, which implements efficient and robust inter-
session communication via network sockets. In order to 
implement this consistently, the pseudo devices, which 
are not controlled internally by SPEC but in the macro 
level, must follow a new interface that permits SPEC to 
treat them almost like the devices supported in the C 
code. This feature allows modularised configurations in 
complex BL set-ups by converting some SPEC sessions 
in clients of others. Following the same interface, a higher 
control layer, such as Graphical User Interfaces, can be 
implemented as SPEC clients. This higher layer is being 
implemented on Python/Qt, a strongly supported, portable 
and user-friendly platform. Few GUIs that prove the sta-
bility of this interface have been already designed; the 
current trend is to develop a general GUI common for all 
BLs. 

An important set of tools for BL control is also devel-
oped on Python/Qt, including data visualisation and 
analysis modules, BL configuration managers, software 
installers, among others. 

PERFORMANCE 
As mentioned before, a key feature of the system is its 

scalability, being able to run in a single workstation as 
well as on multiple PCI/cPCI crates connected through 
the network. In the first case, a single access to the hard-
ware through all the control layers is reduced to 50 µs, 
while the use of the network raises the single access time 
to 150 µs. These values are notably lower than their coun-
terpart on the old OS/9-M68K-10baseT of 3 ms. 

The Linux control system also provides an interface for 
fast software-based acquisitions, one of the main goals of 
this modernisation project. This mechanism, called Hook 
after its OS/9 implementation, “hooks” into hardware-
related events to trigger synchronous data acquisition. It is 
implemented in the kernel layer and connects, at run time, 
a specified event with the reading of hardware cards. The 
triggering event can be a device interrupt or a software 
system call. On the event generation, the configured 
hardware “channels” are read and their contents are stored 
in a kernel buffer. A Hook TACO device server continu-

ously transfers the data to a user-space buffer and, when 
requested, to the client. Since the configuration of the 
trigger event and the hardware channels to read is done at 
run-time, this a software triggering notably simplifies the 
instrumentation cabling when a good synchronisation is 
desired, important in multi-purpose, flexible BLs. Acqui-
sition rates of 10,000 points/sec are normally achieved 
with this system, reading, simultaneously, VME, PCI and 
cPCI cards. The channel synchronisation in Hook acquisi-
tions is fixed by the single hardware access time of 1 µs 
for PCI/cPCI and 3 µs for VME. It is worth to say that 
several Hook devices are available in the system, allowing 
multiple acquisitions to take place at the same time. 

The next goal in performance terms is the use of dual 
CPUs control systems. The chosen industrial PCs support 
this configuration, and the extra CPU cost is well worth 
compared with the expected performance. This resource 
increase will break the bottleneck formed when high-level 
applications (like online plotting) run on the same PC at 
acquisition rates higher than 10 KHz with VME interrupt 
generators. 

CONCLUSIONS 
As a conclusion, the system allows the modernisation 

of the ESRF BL control, supporting the current VME 
instrumentation as well as the new PCI and cPCI plat-
forms. Its ability to coexist with the OS/9-M68K control 
system permits its gradual integration on the BLs. At the 
time of writing this paper, the ESRF BLs BM16, ID23 
and ID31 are completely based on the Linux control sys-
tem, while the BLs ID11, ID22 and ID32 have introduced 
Linux PCs to substitute OS/9-M68K crates. Several BLs 
(ID9, ID19, ID21) are in progress of introducing the 
Linux PCs in their control systems, and new BLs are ex-
pected to install it from the start. 

ACKNOWLEDGEMENTS 
This work has been developed jointly by the BLISS and 

the ISG-Electronics. Special thanks to R. Hino for his 
support.  

REFERENCES 
[1] A. Götz, A. Homs, B. Regad, M. Perez, P. Mäkijärvi, 

W-D. Klotz, “Modernising the ESRF Control System 
with GNU/Linux”, ICALEPCS 2001, San Jose,  No-
vember 2001. 

[2] A. Götz, J. Meyer, E. Taurel, W-D. Klotz, “TANGO - 
A Object Oriented Control System based on 
CORBA”, ICALEPCS’99, Trieste, October 1999. 

 

Proceedings of ICALEPCS2003, Gyeongju, Korea

173


	LINUX/PCI: THE ESRF BEAMLINE CONTROL SYSTEM MODERNISATION
	INTRODUCTION
	HARDWARE IMPLEMENTATION
	SOFTWARE STRUCTURE
	Operating system and drivers
	Middleware
	Control application layer

	PERFORMANCE
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES


