
A MODULAR INTERFACE BETWEEN CUSTOM PCI
INSTRUMENTATION AND COMMERCIAL SOFTWARE

L. Day, J. Power, M. Stettler, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract
Control of custom instrumentation as accomplished

through platforms consisting of unique hardware, drivers,
process and control programs, and user interfaces can
alternatively be implemented with custom PCI hardware,
custom driver software, and commercial process and
control applications including the user interface. Process
control of SNS custom diagnostics PCI instrumentation is
accomplished through applications developed from
standard commercial software. The system’s design
maximizes modularization of the hardware, software, and
operator interface, which simplifies the complexity of
development by requiring minimal overlap of expertise
between the hardware designers, software engineers, and
operators. Cost of development is also kept minimal by
integrating commercial software packages at the lowest
level possible. SNS diagnostics hardware designers
independently create LabVIEW applications to verify the
functionality of their instruments. The software driver
modules are implemented as DLLs containing exported
functions callable by any number of client processes. A
library of sub-VIs is pre-configured with driver function
calls establishing the communications connection for
instrument control and data acquisition.

INTRODUCTION
The diagnostic systems designed for the Spallation

Neutron Source (SNS) beam-line were designed to be
developed modularly using commercial products,
simplifying the design and development of intelligent
instrumentation. The standard PC was chosen as the
platform with the idea that commercially available
application development environments (ADE) and driver
development tools could be used for the diagnostic
application and the interface to the custom hardware
respectively. This would enable a stand-alone system to
be built simplifying development and testing. Figure 1
shows the stand-alone software structure design.

A mechanism for integrating with the SNS global
controls would be provided and could be installed when
the system was commissioned.

The use of both commodity and real-time OSs were
considered. Microsoft Windows was chosen due to the
large variety of commercial tools available that supported
both application and system software development.
Windows does not support real-time, deterministic data
acquisition and requires support at the hardware and/or
driver level. However, real-time extensions [1] are
available for Windows if driver level implementation
becomes cumbersome. Other advantages of commodity
systems include a self hosting development environment
and the ability to develop on common desktop units.

Finally, embedded versions are available to reduce the OS
to the minimal footprint for deployment.

HW Drivers

Custom system level utilities

ADE Application

Commodity Platform and OS

Custom Module

Fi

For the low
Jungo Softwa
This generic
immediate ac
support modu
details like in
play).

For the AD
chosen. With
processing a
includes the
for extended
API developm
in custom ins
on other di
Demonstratio

DLLs were
commercially
for communi
Another was
communicatio
system’s dat
control appli
instrument fu
interface with

The use o
natural mod
segregation o
flexibility. Th
the reduction
required due
the user inte

Proceedings of ICALEPCS2003, Gyeongju, Korea

185
Commodity
gure 1: Basic Software Structure.

-level driver development, a kit available by
re Technology [2], WinDriver, was selected.
 driver product provided an API for
cess to hardware at the user level system
les. WinDriver also handles OS interface
stallation and hardware detection (plug and

E, National Instruments’ LabVIEW [3] was
 its powerful tools for analyzing data, signal
pplications were created easily. It also
ability to link to external software modules
functionality. This facilitates this system’s
ent based on Jungo driver. LabVIEW’s use

trumentation has already been demonstrated
agnostic projects such as Low Energy
n Accelerator [4].
 developed to provide stable APIs between
 developed modules. One DLL was created
cations between LabVIEW and WinDriver.
 developed for efficient high-level system
ns, allowing other applications to access the

a without interfering with the LabVIEW
cation. While not an integral part of the
nctionality, this DLL was developed to
 the SNS controls, EPICS [5].

MODULARIZATION
f commercial products contributed to the
ularization of the system resulting in
f development tasks and providing design
e most notable advantage of this design was
 of the amount of specialized software
to the ability to use a commercial ADE as
rface. The hardware designer was free to

develop and debug his hardware with the ADE of his
choice. Specialized low-level data processing and analysis
routines were no longer needed.

The savings blanketed over areas including time-and-
effort, system cost, and development coordination
resulting in the ability for a small team to deliver an easily
maintainable system of economical commercial products
in a timely manner.

HARDWARE
Further modularization of the system was done at the

hardware level. The hardware was designed to consist of
a general PCI motherboard that supports various custom
acquisition DFEs [6]. The hardware designer’s insight of
the advantages of this design is note worthy.

The system’s specialized software requirements were
again reduced with the use of one generic motherboard.
One device driver was needed. In addition, the
development of the driver was done during the design
phase of the acquisition hardware. As soon as a
motherboard prototype was available with the basic
register map, the driver was developed to ~90%
completion. Details of the register map and driver were
worked out as the acquisition modules became available.
The remaining testing was left to the hardware designer
using his choice of ADEs.

DRIVER
The device driver was created using Jungo’s

commercial driver development tool, WinDriver.
WinDriver is an API providing a library of standard
driver functions for configuring and accessing a variety of
supported hardware designs. This API enables a driver to
be developed and debugged in user mode, within a system
DLL or low-level application.

SNS diagnostic systems use WinDriver to detect and
register its custom PCI card(s). It maps the card’s
physical address space into the local process’s virtual
address memory according to user level configuration
specifications. This includes contiguous, non-paged
system pool buffers for DMA data transfers. WinDriver
also comes with a default interrupt service routine for
basic interrupt handling and contains a mechanism to
spawn an interrupt handling thread for customized
interrupt processing.

The availability of these API features to access the
card’s user and system resources through memory
addressing provide a significant benefit to the diagnostic
system’s development cycle by eliminating the necessity
of a specialized, kernel mode driver. WinDriver’s API is
optimized for minimal performance overhead and is more
than adequate for this system’s support. However, another
Jungo development tool, KernelDriver, is available for
running performance critical modules at the OS kernel
level.

WinDriver also supports automated simulation
capabilities. If WinDriver scans the bus and does not find
a diagnostics PCI card, a user level DLL proceeds to

configure a simulated card’s address space. This highly
advantageous capability allows ADE processing
algorithms to be developed before actual hardware is
available or attached. Thorough testing can be completed
in a controlled environment, eliminating any questions of
hardware affects on the process control.

The complete driver control configuration is
encompassed within a user level DLL. The DLL provides
a complete and easily interfaced API for the ADE layer
and includes both driver support as well as SCADA
control. This is shown in Figure 2 and discussed in the
following section.

l

 User Mode

Kernel Mode

Custom PCI ModuleHardware

WinDriver Kernel Module

WinDriver API

SCADA Library

The API
complete
the ADE
be impo
include
card acce

As me
separate
supportin
level rou
for SCA
motherb
operation
DMA re
DFE rou
details s
appropri

The l
useful
comman
such as
memory

The s
during t
testing o
complete
affects o

Proceedings of ICALEPCS2003, Gyeongju, Korea

186
Commercia
Figure 2: Hardwa

API
 to the hardware is a sy
 driver interface and SC
 layer. Functions are ex
rted into the ADE app
both high-level process
ss as well as hardware s
ntioned previously, the
modules including a g
g various DFE daughte
tines provide applicatio
DA control. These func
oard and provide r
s such as initializatio
quests. Within these fu
tines to complete the

uch as address specifica
ate registers.
ow-level DFE calls are
when debugging the
ds can be initiated to te
 register read/writes,
 transfers.
imulation capabilities
he application develo
f the application’s proc
d off-line and without
f the hardware.
Custom
re Control

stem DLL providing the
ADA control library for
ported from the DLL to

lication. These functions
 routines and low-level
imulation support.
 hardware is designed as
eneral PCI motherboard
r cards. The DLL’s high-
ns with generic functions
tion’s interface with the
outines that complete
n, status inquiries, and
nctions are calls to the

processing by supplying
tions and reading/writing

 also exported and are
 hardware. Individual
st hardware functionality
interrupt handling, and

are extremely valuable
pment phase. Thorough
essing algorithms can be
any confusion as to the

This API is to be used for single process control. A
separate, higher-level API is available enabling inter-
process communications and data distribution.

EPICS
Channel Access

National Instruments
LabView Application

ADE
Distribution DLL

Although there were many choices of ADEs for the
controls application, LabVIEW was chosen due to its
familiarity among the development team and its strength
as an engineering programming language. The hardware
designer was able to develop sophisticated signal
processing algorithms quickly using LabVIEW. An
example of a LabVIEW data acquisition and processing
application is the SNS BPM system [6]. This system
acquires eight channels of I and Q data from RF probes.
The LabVIEW application uploads and processes this
data to determine the beam phase and beam position.
Phase is determined relative to the reference and beam
magnitude signals and position is determined by
comparing the signal amplitudes between the four probes.

SCADA DLL

Jungo Windriver Microsoft Windows OS

Tool-kitCommodity Custom

Because LabVIEW includes a mechanism for
dynamically linking to system DLLs, control of the
hardware and uploading of the I and Q data was easily
accomplished using the driver/SCADA API. This along
with the full processing capabilities resulted in a system
that was completely built and tested on a stand-alone
system with minimal team effort.

DISTRIBUTED CONTROL
For SNS commissioning, the diagnostic controls data

was distributed to the SNS global controls system,
EPICS. A high-level DLL was developed to communicate
with the controls protocol, EPICS Channel Access. This
protocol distributes data in small, logically related blocks.
Therefore, the DLL was designed to create a database like
structure in system memory, where the diagnostics data
would be held. The data would be available in small
blocks of related data, which could easily be transferred
between itself and the SNS network.

However, control of the instrumentation is limited to a
single process and was to remain within the LabVIEW
application. Both LabVIEW and the SNS controls require
the ability to update and retrieve data from the DLL’s
system memory. Therefore, the DLL exports functions
that both processes call to maintain current knowledge of
the system’s status. LabVIEW retrieves control requests
originating from the SNS system and updates the data sets
to be distributed. This is shown in Figure 3.

Figure 3: System Distribution

This distribution mechanism provides valuable benefits.
While the system meets the SNS integration requirements
providing distributed data for remote processes, it is
easily converted back to a stand-alone system providing
the ability to maintain and upgrade off-line. An additional
benefit is that processes other than SNS controls can
access the data, for example, an IDL application could
complete secondary processing on the data in real-time.

CONCLUSION
The use of a commodity system and commercial

software simplified and reduced the cost of deploying the
SNS diagnostics custom instrumentation controls. The
modular design proved to have significant advantages in
the areas of development, maintenance, cost, and team
support. Most notably, the use of commercially available
products reduced the amount of specialized software
required and simplified the development process.

REFERENCES
[1] Venturcom, http://www.vci.com
[2] Jungo Inc, http://www.jungo.com
[3] National Instruments Inc, http://www.ni.com
[4] “Automated Control and Real-Time Data Processing

of Wire Scanner/Halo Scraper Measurements,” L. Day
et al., particle Accelerator Conference, 2001

[5] Experimental Physics and Industrial Control System
[6] “Beam Position Monitor Systems for the SNS

LINAC”, J. Power et al., Particle Accelerator
Conference, 2003

Proceedings of ICALEPCS2003, Gyeongju, Korea

187

	A MODULAR INTERFACE BETWEEN CUSTOM PCI INSTRUMENTATION AND COMMERCIAL SOFTWARE
	INTRODUCTION
	MODULARIZATION
	HARDWARE
	DRIVER
	API
	ADE
	DISTRIBUTED CONTROL
	CONCLUSION
	REFERENCES

