
HIERACHIES IN EPICS AND VISUAL DCT 

M. Sekoranja, I. List, R. Sabjan, S. Sah, I. Verstovsek, Cosylab, Ljubljana, Slovenia 
J. Maclean, APS, Argonne National Laboratory, Illinois, USA 

Abstract 
Visual DCT [1] (Visual Database Configuration Tool) 

is becoming the most popular graphical database 
configuration tool for EPICS [2] databases. EPICS is a 
widely used control system based on a real-time database 
configured from text files. The configuration data comes 
from two types of files - one defines templates and the 
other instantiates channels from them. The current EPICS 
template substitution mechanism [3] is restricted in its 
capabilities and it only allows macros to be passed 
downwards into a template instance. This limitation 
makes an EPICS database totally flat, which can result in 
great difficulties when designing complex applications, 
not to mention maintaining them. The next release of 
EPICS will introduce hierarchy support into EPICS core. 
Instruments will be provided for templates to export fields 
that are of public interest and thus resembling 
mechanisms of object-oriented programming. However, 
this release may still be some time away, while 
developers need those features now. The present version 
of Visual DCT therefore has full graphical support for 
hierarchical features, enabling developers of today to use 
the technology of tomorrow. VDCT leads the field in 
advanced features, such as reverse engineering of already 
existing databases, and user friendliness. It is also the 
only graphical database configuration tool, which not 
only supports hierarchies in the EPICS databases now, but 
also incorporates an integral Database Flattening Tool to 
produce EPICS databases to be compatible with and 
executable on current core releases. New development 
will also introduce debug tools allowing real-time display 
of channel properties inside Visual DCT, making 
database debugging much easier. 

EPICS AND HIERARCHIES 
Abstraction of certain algorithms and grouping 

functions to make logical blocks have helped computer 
programming immensely. Only by using these approaches 
can a programmer of today cope with the complexity of 
modern programs, understanding those thousands of lines 
of source code. 

EPICS core so far has no support of hierarchical 
programming. Developers worldwide use different 
approaches how to cope with complex EPICS databases. 
Up until now the best tool to use was CapFast [4], which 
is a commercial tool for making electronic drawings, 
adapted to support EPICS databases as well. The main 
disadvantage of CapFast is its price, which is 
considerably high, especially for mostly academically 
based EPICS community. Developed for a different 
purpose, CapFast is not optimized for EPICS databases as 
well. 

HIERARCHIES AS A PART OF EPICS 
EPICS community understands the problem and lack of 

hierarchical designs inside EPICS databases. The next 
major release of EPICS core will therefore include 
support for hierarchical designs. This calls for additional 
keywords in the EPICS database syntax. 

So far, there were two types of file associated with 
EPICS databases. First, we had a template file in which 
the database was actually “programmed” and a 
substitution file which was able to create multiple 
instances of templates, filling macros with appropriate 
values. 

The new proposal allows for a two-way communication 
among different templates. This includes passing down 
macros into the template instance (giving values for fields 
within expanded template) and values to be exported from 
the template instance to the higher level (usually the 
destination field name for a link in a record defined in the 
higher level file). 

Macros are defined in the expand statement and pass 
information into a template; ports are a kind of macros 
defined in a template statement that pass information 
upwards out of a template instance to their calling 
database. 

 
record(calc,"slide1:error") { 
  field(INPA,"$(slmot1.position)") 
   ... 
} 
expand("slideMotor.vdb", slmot1) { 
  macro(name, "sm1") 
  macro(address, "4") 
  macro(demand, "slide1:demand.VAL") 
} 
record(ao,"slide1:speed") { 
  field(OUTP, "$(slmot1.speed)") 
  field(DTYP, "Soft Channel") 
  ... 
} 

Figure 1: Example of usage of expand statement used in a 
higher level file. 

Note that we are using the macro syntax 
$(template_instance.port_name) to bring port values 
from templates into the higher level diagram. 
Unfortunately we have to allow port macros to be used 
before the related expand statement appears in the parent 
file, so any database flattening tool will have to make two 
passes through the data and should also detect loops in 
port/macro definitions. 

 
 

208

Proceedings of ICALEPCS2003, Gyeongju, Korea



template("Description of the Slide 
Motor template...") { 

 

  port(speed, "$(name):speed.VAL", 
"Record to set motor speed mm/sec") 
  port(go, "$(name):startmoving", 
"Forward link to this to cause 
movement") 
  port(position, "$(motor.position)", 
"Current position of the slide") 
  port(greet, "Hello, world!", "Just 
being friendly...") 
} 
record(ai, "$(name):speed") { 
   ... 
} 

Figure 2: Example of the template statement in a lower 
level file (slideMotor.vdb). 

When performing macro substitutions within strings, if 
a macro name is undefined the macro name and its 
surrounding $() characters will be left unchanged in the 
flat .db file. This allows templates to be used when 
creating a database that still takes macro arguments on 
loading with dbLoadRecords(). For undefined port 
macros though an error should probably be reported 
instead (but remember that these can't be properly 
checked and substituted until all expand statements and 
their related templates have been read in. 

Figure 4: Example of expanded template in a higher level 
file. 

Due to the fact that hierarchies are not yet a part of 
EPICS core, files created with Visual DCT and using 
hierarchical designs should have a special extension 
(.vdb), which is changed to a normal extension (.db) 
when flattened by a Database Flattening Tool. 

DATABASE FLATTENING TOOL 
In order to be able to use EPICS databases produced by 

Visual DCT on current EPICS core, a special Database 
Flattening Tool was produced and integrated into Visual 
DCT.  The result of the process is a flat EPICS database 
which can then be loaded into an IOC. 

TEMPLATES AND VISUAL DCT 
Visual DCT is the fast evolving Database 

Configuration Tool of today [5, 6]. It was designed 
especially for EPICS to provide features needed by 
EPICS developers. It is written in Java and runs on a 
number of platforms. 

The flattening process involves expanding all templates 
and replacing the macro and port macro variables with 
their strings. If a macro name is found that has no 
definition within its scope, it will be left exactly as it was 
found, which allows load-time macros to be used. The 
Database Flattening Tool also puts comments to the flat 
database file at the start and the end of each expanded 
template. This provides a way for any other tool to refer 
back to original template from the flat file: 

Recent developments introduced the aforementioned 
hierarchical features into Visual DCT templates with full 
graphical support. Ports and macros can be defined with a 
mouse click and linked to appropriate process variables 
just like normal links. 

User has to determine the port/macro type. This affects 
the representation of ports and macros in the database. 

  
# expand("/full/path/to/template.vdb", 
instance_name) 

  Constant port   ...expanded contents of template.vdb 

   Input port 
# end (instance_name) 

Figure 5: Flattened database and reference to original 
template. 

  Output port 
CAPFAST CONVERSION TOOL  

Figure 3: Representation of different port types in the 
lower level file. Macros are displayed similarly. 

A conversion tool which converts CapFast drawings to 
Visual DCT supported files, with practically no manual 
interventions, is also being produced. Several features are 
incorporated within, such as automatic conversion of 
drawings, all the functionality, and conversions of 
hierarchies. 

 

209

Proceedings of ICALEPCS2003, Gyeongju, Korea



Different shapes and sizes are used for records in 
CapFast which are not compatible with Visual DCT, 
which uses only rectangular shapes. So there is some 
compensation on this account and usually drawings have 
to be manually adjusted. But considering this and all the 
features we get by using Visual DCT it is just a small 
turn-off. 

All the functionality is already automatically converted, 
except there are still some efforts put into producing the 
same results as CapFast does. 

While converting hierarchies CapFast introduced some 
new problems, due to its prime intention to make 
electronic drawings. CapFast could not tell the difference 
between macros and ports, which is the main problem, 
and therefore the whole hierarchy has to be examined 
before a single Visual DCT file can be produced. 

The final goal of this project is to generate Visual DCT 
files which in turn produce the same EPICS databases as 
CapFast does. 

JCA DEBUG PLUGIN 
A special Visual DCT plug-in was also produced which 

introduces new debugging possibility to EPICS databases 
developers. The developer can load a database into an 
IOC and observes the PV values from the Visual DCT. 
Only a substitution file has to be provided to cater the 
values of all macros. 

The VAL field is displayed with larger fonts together 
with its timestamp. The developer can select which other 
fields are monitored and displayed through the inspector 
dialog.  

The debug plug-in also supports EPICS alarms, 
colouring the values accordingly. Timeouts are also 
indicated with a clock sign displayed over the record 
instance symbol. 

 

 
Figure 6: Timeout is indicated for the slide1:speed record. 

Last value received was 2.000 at 12:55:38.463. 

Communication between Visual DCT and the IOC is 
achieved using Java Channel Access [7]. 

CONCLUSION 
A large portion of EPICS community still uses text 

editors to configure their databases. This can leads to 
control system applications that are hard to maintain and 
expand. Though EPICS scales incredibly well as a control 
system, the development process can become a major 
bottleneck, requiring too much time and resources. This 
can be avoided with using (graphical) database 
configuration tools. Other concepts, such as hierarchical 
designs, furthermore divide templates into more readable 
and maintainable chunks. 

By implementing hierarchies Visual DCT has bridged 
the last big gap towards the competition. Taking into 
account the fact that Visual DCT is already very popular 
among EPICS community and considering extreme 
extensibility and development rate of Visual DCT, we can 
justifiably claim that it truly represents the future of 
EPICS database configuration. 

ACKNOWLEDGEMENTS 
We would like to express out gratitude to all people 

involved on Visual DCT project, especially the funders of 
certain packages.  

Our thanks go to APS, Diamond and SNS for funding 
the development of hierarchical features in Visual DCT. 
This is truly the most important improvement and a large 
step forward. 

Once again we would like to thank SLS for supporting 
the development of JCA Debug Plug-in. The first version 
of Visual DCT was a result of ideas from SLS and their 
funding and we are very happy that they remain 
committed to the success of this product. 

JLab has kindly encouraged the development of 
CapFast to Visual DCT Conversion Tool. We expect the 
final version in the months to come. 

REFERENCES 
[1]http://visualdct.cosylab.com 
[2]http://www.aps.anl.gov/epics 
[3]http://www.aps.anl.gov/epics/extensions/msi/index.php 
[4]http://phase3.com/epics.html 
[5]M. Sekoranja et al., “Visual DCT – Visual EPICS 

Database Configuration Tool”, ICALEPCS 2001 
[6]R. Sabjan et al., “Visual DCT – EPICS Database Can 

Be Fun”, PCaPAC 2002 
[7]http://www.aps.anl.gov/xfd/SoftDist/swBCDA/jca/ 
 jca.html

 

210

Proceedings of ICALEPCS2003, Gyeongju, Korea


	HIERACHIES IN EPICS AND VISUAL DCT
	EPICS AND HIERARCHIES
	HIERARCHIES AS A PART OF EPICS
	TEMPLATES AND VISUAL DCT
	DATABASE FLATTENING TOOL
	CAPFAST CONVERSION TOOL
	JCA DEBUG PLUGIN
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES


