
DEVICE CONFIGURATION HANDLER FOR ACCELERATOR CONTROL
APPLICATIONS AT JEFFERSON LAB*

M. Bickley, P. Chevtsov, T. Larrieu, Jefferson Lab, Newport News, VA 23606, USA

Abstract DEVICE DRIVER FRAMEWORK
The accelerator control system at Jefferson Lab uses

hundreds of physical devices with such popular
instrument bus interfaces as Industry Pack (IPAC), GPIB,
RS-232, etc. To properly handle all these components,
control computers (IOCs) must be provided with the
correct information about the unique memory addresses
of the used interface cards, interrupt numbers (if any),
data communication channels and protocols. In these
conditions, the registration of a new control device in the
control system is not an easy task for software developers.
Because the device configuration is distributed, it requires
the detailed knowledge about not only the new device but
also the configuration of all other devices on the existing
system. A configuration handler implemented at Jefferson
Lab centralizes the information about all control devices
making their registration user-friendly and very easy to
use. It consists of a device driver framework and the
device registration software developed on the basis of
ORACLE database and freely available scripting tools
(perl, php).

The device driver framework consists of IPAC, GPIB,
and Common Serial driver libraries.

IPAC Driver Library
The IPAC driver library provides a standard software

interface to different types of IPAC carrier boards. The
library is based on the drvIpac software developed by A.
Johnson [3]. It has a common IPAC interface module and
a set of carrier board support modules. All control and
data requests to the carrier boards go through the common
interface module which in turn calls the carrier board
support module written for the particular type of carrier
board.

Each carrier board is activated or registered with the
use of only one library call:

 stat = initIpCarrierBoard(CBT, PARAM_STR)

where stat is the board registration status (traditionally,
it is equal to 0 if the registration is OK or contains an
error code in case of failure), CBT is a carrier board type,
and PARAM_STR is a string containing board-specific
initialization parameters which are very important for the
IPAC Driver Library. This parameter string always
contains the I/O base address of the board in the VME
A16 address space. It may also have the information
about the used VME A24 address space, interrupt
numbers, etc. The order in which carrier boards are
registered defines the carrier number for the control
computer (IOC) to deal with, starting from zero for the
first registered board. When the carrier board is activated,
all its slots become available for communication with the
IOC.

INTRODUCTION
With the use of superconducting RF technology, the

CEBAF accelerator provides nuclear physics experiments
at Jefferson Lab with electron beams of very high quality.
The accelerator control system at Jefferson Lab is based
on the Experimental Physics and Industrial Control
System (EPICS) toolkit [1]. With its very powerful set of
tools, EPICS allows easy system extensions at all control
levels. The software presented in this paper has been
designed primarily for an EPICS environment but can
easily be ported to any control system.

Hundreds of physical devices at Jefferson Lab are
controlled over such popular instrument bus interfaces as
Industry Pack (IPAC), RS-232, and GPIB. The Industry
Pack bus is a point to point bus from a carrier board to an
IPAC module or card [2]. The IPAC card is passive on
the bus and can only be accessed by the carrier board.
IPAC provides a convenient and inexpensive way of
implementing a wide range of control, I/O, analog and
digital functions. Various GPIB and RS-232 interface
modules are also available in the IPAC standard. This
makes Industry Pack an attractive connection method for
integrating physical devices into the accelerator control
system. The device driver framework that has been
created at Jefferson Lab provides a very efficient software
solution for this integration.

GPIB Driver Library
The GPIB driver library at Jefferson Lab was written

with the use of the ideas implemented in the Message
Passage Facility (MPF) of M. Kraimer [4]. The library
consists of a general GPIB control module and an IPAC
interface module. The general GPIB control module is
completely responsible for the GPIB communication
protocol. The IPAC interface module deals with GPIB
communication cards. The communication card is
activated with the use of the next library call:

 stat = initGpibIpacLib(CBN, SLN, intNum)

Here stat is again the registration status, CBN is a carrier
board number, SLN is the number of the slot (starting
from 0 for slot “A”) housing the card, and intNum is the
interrupt vector number that is used by the card.

*Supported by DOE Contract
#DE-AC05-84ER40150.

Proceedings of ICALEPCS2003, Gyeongju, Korea

211

During the activation, the GPIB driver makes several
checks to make sure that the specified carrier and slot are
legal, the interface card is installed and has the valid
manufacturer and model ID values in its PROM. It also
calls all necessary GPIB initialization routines and
connects the interrupt service routine to a particular
interrupt vector number. The activated card provides the
communication bus for controlling GPIB devices
connected to it.

Common Serial Driver Library
The common serial driver library deals with serial (RS-

232) ports used for the connections with control devices
[5]. It has a serial hardware support module and a serial
port control block. The serial hardware support module
handles various RS-232 communication hardware
components including IPAC serial interface cards. Each
serial port is served by a separate control task that
exchanges messages with the EPICS database records
referencing this port. The serial port control task reads
and writes data into and out of the serial port. It also
handles the hardware operation timeouts.

Each serial port on any IPAC card is activated with the
use of the next library call:

 stat = ipacSerialPortConfig(CBN, SLN, SPN, parms)

where stat is (as always) the registration status, CBN is
the carrier board number, SLN is the slot number
occupied by the card, SPN is the port number on the card
and parms is the list of the basic serial communication
parameters: the used baud rate, data word size, number of
stop bits, parity, etc.

The serial port activation procedure is very similar to
the registration of GPIB communication lines described
above. The activated port becomes available for
communication with a serial device connected to it.

DEVICE REGISTRATION SOFTWARE
One of the main advantages of the device driver

framework described in the previous section is that it
typically does not require any software coding for
connecting a new physical device to the control system.
All that needs to be done to set up EPICS control for this
new device is to create the EPICS database that takes care
of the device command protocol and run it. From the
other side, to properly activate and handle device
communication channels, the control computers must be
provided with the correct information about unique
memory addresses of the used interface boards, interrupt
numbers, etc. In these conditions, the device registration
bookkeeping is not an easy task for control system
software developers. Because the device configuration is
distributed, it requires the detailed knowledge about not
only the new device but also the configuration of all other
devices on the existing system. A configuration handler
implemented at Jefferson Lab centralizes the information

about all control devices making their registration user-
friendly and very easy to use.

The idea of the device configuration handler is
transparent. As mentioned above, each device
communication channel is activated by a very limited
number (one or two) of the corresponding driver library
calls. For each IOC and for each particular type of the
used instrument bus, all activation calls are combined into
one communication bus configuration (or device
configuration) file. All these files reside in one directory
in the control computer file system. At start up time,
specially designed VxWorks shell scripts download the
required communication bus configuration files into the
IOC and activate the used communication channels.

Furthermore, information about different carrier boards
and device interface modules used at Jefferson Lab is
stored in an ORACLE database. When it is necessary to
add a new device to the control system, user-friendly
graphical forms can be used to allow selection from the
list of available device interface modules and then to enter
the parameters specific for the chosen module type. After
the forms have been filled out, the required
communication bus configuration files are generated
automatically. It is no longer necessary to edit device
configuration files by hand.

By maintaining information in the database for each
IOC and all its associated control devices, it is possible to
ensure that new additions will not introduce conflicts.
For example, when a new serial interface module is added
to a carrier board, the automated process makes sure that
the configuration file doesn’t register it in the same slot
with any of the existing serial modules. Some web based
graphical forms for the registration of serial devices are
shown in Fig.1-2.

Figure 1: Basic serial device registration graphical form.

Proceedings of ICALEPCS2003, Gyeongju, Korea

212

CONCLUSIONS

The device configuration handler at Jefferson Lab
significantly simplifies the work on the control
applications for physical devices. It does not require
software coding for connecting a new device to the
control system. The information about all devices and
their communication parameters is kept in the ORACLE
database. This eliminates any possible errors in these
parameters. It also makes it possible to automate the
creation and modification of the communication bus
configuration files which are used by the device driver
framework on the basis of ORACLE and freely available
scripting tools (perl, php).

ACKNOWLEDGMENTS
The authors are very thankful to K.White for her

support of this work.

REFERENCES
[1] B. Dalesio et al., “The Experimental Physics and

Industrial Control System Architecture: past, present
and future”, NIM, A 352 (1994), p. 179-184.

[2] M. Timmerman, “Comparison of Different Mezza-
nine Buses”, Real-Time Magazine, 97-1, p. 77-81.

[3] A. Johnson, “EPICS Industry Pack Module”,
www.aps.anl.gov/asd/people/anj/ipac/

[4] M. Kraimer, “Message Passing Facility”,
 www.aps.anl.gov/asd/people/mrk/epics/modules/
 bus/mpf
[5] P. Chevtsov, S. Schaffner, “Information-Control

Software for Handling Serial Devices in an EPICS
Environment”, ICALEPCS 2001, San-Jose, CA,
USA, 2001.

Figure 2: Graphical forms used to register serial devices
controlled by a particular IOC.

Proceedings of ICALEPCS2003, Gyeongju, Korea

213

	DEVICE CONFIGURATION HANDLER FOR ACCELERATOR CONTROL APPLICATIONS AT JEFFERSON LAB*
	INTRODUCTION
	DEVICE DRIVER FRAMEWORK
	IPAC Driver Library
	GPIB Driver Library
	Common Serial Driver Library

	DEVICE REGISTRATION SOFTWARE
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

