
MOVING TOWARDS A COMMON ALARM SERVICE FOR THE LHC ERA 

F. Calderini, B. Pawlowski, N. Stapley, M.W. Tyrrell, CERN, Geneva, Switzerland 

Abstract 
The Large Hadron Collider (LHC) is one of the greatest 

technological challenges ever faced by accelerator 
builders. It is due for commissioning in 4 years and will 
have a lifetime well in excess of 10. The LHC will 
contain a completely heterogeneous mixture of industrial 
controls, both hardware and software, as well as 
dedicated, specialised, ‘home’ built systems. As part of 
the control infrastructure of such a complex machine, a 
number of ‘services’ will be essential as aids during 
operation, such as: logging / archiving, post-mortem, 
sequences, alarm system, etc. This paper describes the 
approach to be taken in order to define and provide the 
alarm service necessary for LHC. Details will be given of: 
the graceful transition from the current LEP alarm system; 
accommodating the SPS, PS and CERN’s technical 
services; the technologies to be used; the approach of 
parallel investigations of industrial and ‘home’ built 
systems to ensure the best possible solution; and an 
indication of time scales to provide an operational system. 

INTRODUCTION 
The alarm service of the new alarm system includes: 

the naming, collection, management, and distribution of 
information concerning abnormal situations, ranging from 
severe alarm states to warning states, hereafter referred to 
as Fault States (FS). A FS is defined as the triplet: Fault 
Family (FF), Fault Member (FM), and Fault Code (FC). A 
FF represents a collection of elements with similar 
problems, such as power converters. A FM is an instance 
of a FF, and a set of FC’s represents the problems 
associated with that FF. The structure FF, FM often 
follows closely that of the class, device, property model 
[1], because a class represents a set of equipment with 
similar control characteristics and most probably, 
problems. Such FS’s will be accepted from any part of the 
accelerator complex and offered in a structured way to 
any interested party. The core of this system will be the 
LHC Alarm SERvice (LASER) [2]. LASER will not 
include the surveillance and detection of FS’s. This will 
be performed by User Surveillance Programs (USP’s), 
and will be the responsibility of the application writers, 
equipment and operation groups. These programs could 
run locally in distributed front-end computers, close to the 
equipment, or centrally in server computers. 

INITIAL INVESTIGATIONS 
An important consideration for the launching of this 

project was that several members of the project team were 
responsible for the continuing operation of an existing 
alarm system. This introduced constraints, but also 
ensured that a thorough understanding of existing alarm 
facilities was known. Constraints covered the following: a 

graceful replacement of the current LEP alarm facility [3], 
which includes the SPS and CERN technical and safety 
facilities; integrating the PS complex; reducing 
maintenance; and providing new facilities according to 
the User Requirements [4]. Since the current USP’s will 
not be replaced ‘overnight’, and to offer a graceful 
transition from the current to the new system, gateways 
have been built to ensure both systems receive all FS’s 
whether they are generated by current or new USP’s. This 
will enable validation of the new system against the old. 

To find the best possible approach to build LASER, an 
evaluation was made of the following: SCADA systems, 
commercial software products, products used in nuclear 
installations, and new software technology solutions. 
Issues encountered were: scalability, a nuclear power 
plant has in the order of 10’s of thousands of FS, whereas 
we are dealing with 100’s of thousands; the need to make 
on-line changes to FS definitions without stopping the 
system meant that compiled systems were not acceptable; 
rule based systems did not offer the data management 
facilities required; and most products did not offer FS 
reduction during avalanche conditions. As a result of the 
evaluations, it was decided to build the system using 
‘state of the art software technology’, based on standards. 

SYSTEM OVERVIEW 

The Architecture 
The LASER system is a distributed, layered 

application. Each layer forms a foundation of services for 
the layers above and depends on the services provided by 
the layers below by means of clear interfaces (see Fig. 1). 
It is deployed over a 3-tier architecture, where: 

• The resource tier is made of the dispersed set of 
USP’s, detecting and triggering FS changes. 

• The business tier implements the system business 
logic and its services. It relies on a knowledge base 
modelling the domain. 

• The client tier consists of dedicated consoles and 
software components consuming the business 
services. 

The Technology 
The system relies on the Java 2 Enterprise Edition 

(J2EE) [5], which defines the standard for developing 
multi-tier enterprise Java based applications. The LASER 
system can be considered as a distributed, asynchronous 
and service based system. All these sensitive aspects are 
covered by the J2EE specifications: the Java Messaging 
Service (JMS) [6] for the asynchronous communication 
and the Enterprise Java Beans (EJB) [7] for a component 
based modelling of distributed business services. The 
Oracle9i J2EE Application Server [8] and the SonicMQ 
[9] JMS messaging system have been integrated to 

Proceedings of ICALEPCS2003, Gyeongju, Korea

580



provide a scalable and reliable runtime environment. In 
addition, JMS connectivity for non-Java platforms has 
been developed via a C/C++ interface, based on the HTTP 
protocol, in order to allow USP’s to seamlessly push FS 
changes via XML based messages from potentially any 
platform. Finally, dedicated graphical consoles have been 
built on top of the NetBeans platform [10], a widely 
adopted infrastructure backplane for complex desktop 
applications. 

Laser-Client API 
(Java)

Laser-Source API 
(C/C++/Java)

EJB Container

Alarm

Entity

JMS

JMS

Gathering & 
Distribution 
Service Persistence Service

Any

Other

Service

XML

Publisher

Session

Processor

Session

Receiver

Message Driven

Definition Consoles Alarm Consoles External ClientsAdmin Consoles

PVSS
Industrial
Systems

Accelerator
Devices

Technical
Services

Control
SW

USP’sR
es
ou
rc
e

B
us
in
es
s

C
lie
nt

Laser-Client API 
(Java)

Laser-Source API 
(C/C++/Java)

EJB Container

Alarm

Entity

JMS

JMS

Gathering & 
Distribution 
Service Persistence Service

Any

Other

Service

XML

Publisher

Session

Processor

Session

Receiver

Message Driven

Definition Consoles Alarm Consoles External ClientsAdmin Consoles

PVSS
Industrial
Systems

Accelerator
Devices

Technical
Services

Control
SW

USP’s

Laser-Client API 
(Java)

Laser-Source API 
(C/C++/Java)

EJB Container

Alarm

Entity

JMS

JMS

Gathering & 
Distribution 
Service Persistence Service

Any

Other

Service

XML

Publisher

Session

Processor

Session

Receiver

Message Driven

Definition Consoles Alarm Consoles External ClientsAdmin Consoles

PVSS
Industrial
Systems

Accelerator
Devices

Technical
Services

Control
SW

USP’sR
es
ou
rc
e

B
us
in
es
s

C
lie
nt

 

 

Figure 1: The architecture. 

THE RESOURCE TIER 
The resource tier is made up of USP’s. These are 

surveillance applications, developed by LASER users that 
monitor either hardware or software to detect problems. A 
USP is associated with a set of FS’s, which it can switch 
on, off or change associated properties, depending on the 
state of the domain being surveyed. The Laser-source API 
has been developed to connect these USP’s to the 
business tier. 

LASER has a contrasting and multifarious set of user 
environments in terms of platforms and languages where 
USP’s run, as well as the equipment to be surveyed. 
USP’s survey the following: accelerator equipment, 
services such as water and electricity, as well as software 
and hardware for the control system. Physically, these 
USP’s may be implemented on differing hardware like: 
PLC’s, VME crates with Power PC’s, PC’s and servers 
with a variety of OS and software such as LynxOS, 
Windows, Unix, and SCADA. Each domain can add 
further limitations such as real-time, embedded software, 
or no threads. Together, these constraints increase the 
difficulty of implementing features for the source API. To 
contend with this, the source API is designed to be small 
and as simple as possible while being common to all 
users. It is implemented in Java and C/C++. 

The call to the source API is made in the following 
way. The USP writer builds a message representing a FS 
by creating a C struct or Java object, and inserting the 
mandatory data: FS triplet, action such as ‘active’ or 
‘terminate’, and the time of creation, which could be at 
the microsecond precision. A number of name / value 

pairs of data can be added to further describe the FS, for 
example, demanded and actual magnet current values, a 
temperature, etc. Communication is done, by pushing one, 
or a set of FS changes, encapsulated in a message, to a 
JMS topic, using HTTP for the C/C++ API 
implementation or JMS for Java. The business tier 
subscribes to all USP FS topics via a JMS broker. To 
complement this asynchronous connection, the USP 
writer is requested to periodically push a ‘keep alive’ 
message containing the current active set of FS. The 
business tier subscribes to these messages and uses this 
information to check the health of each USP, issuing a FS 
if all is not well, and verifies its FS’s with that of the USP. 

THE BUSINESS TIER 
The business tier is the core of the system that provides 

the actual process management, and where the business 
logic and rules are executed. It implements and offers the 
following services: 

• FS gathering: FS changes are asynchronously and 
sequentially collected from each registered USP. The 
result is then processed, in parallel, using optimised 
algorithms and a distributed caching mechanism to 
absorb FS avalanches. 

• USP status management: USP’s are monitored and 
their status kept consistent by a periodic 
synchronisation check. 

• FS grouping and distribution: FS’s are grouped 
within a hierarchy of domains of interest, referred to 
as the FS category tree. This tree offers a flexible 
way for clients to select their FS domains of interest. 

• FS analysis: FS reduction and masking algorithms 
are applied to allow clients to filter out redundant 
FS’s when making requests via the category tree. 

• FS persistence: each FS status is persisted to 
guarantee consistency at any point in time. 

• FS browsing: FS definitions, dependencies and status 
can be browsed 

• FS archiving: changes to the status of a FS are 
traced, along with the life cycle of the FS definition 
itself, allowing historical searches and statistical 
analysis. Combining this information with that 
provided by the LHC logging service will allow 
correlation of data for post-mortem analysis. 

• On-line FS definition management: FS definitions, 
their relationships and related data can be updated 
‘on-line’, without system downtime, to maximise 
availability and maintainability. 

• Alarm console user authentication and 
configuration: allows dedicated alarm consoles to 
authenticate the users and to associate profiles. 

• Scalability and failover: scalability and failover are 
guaranteed by clustering techniques. 

All the services are implemented via EJB components 
and offered to both alarm consoles and software clients 
via specific API’s, following session and message façade 
design patterns. 

Proceedings of ICALEPCS2003, Gyeongju, Korea

581



THE CLIENT TIER 
The client tier, which consists of alarm, definition and 

administration consoles and external software, consumes 
services of the business tier. These clients, written in Java, 
use the following Java API’s to communicate with the 
business tier: 

• Laser-client API: it offers basic functions for 
accessing FS collected by the business tier. To access 
‘active’ FS, a selection of categories and filters are 
passed to the business tier via the API as: property, 
operator, value. The current state of that FS 
selection, as seen by the business tier, is returned. 
Thereafter, the business tier sends changes 
asynchronously using JMS. Archive and FS 
definition browsing are also offered. 

•  Laser-console API: this API is closely related to the 
alarm console client. It offers login and configuration 
facilities. Each alarm console user must have an, 
‘alarm console login’. These users are persisted in 
the business tier and managed by the LASER 
administrator. 

Currently, the main part of the client tier constitutes the 
alarm console, which provides a ‘window’ through which 
operators and equipment specialists can see the FS 
situation of the whole or part of the LHC complex. This 
application is based on the NetBeans Platform, [10], a 
generic GUI framework for building graphical 
applications, selected as a standard for the Controls 
Group. Using this platform enables the developer to 
concentrate on the application and not worry about the 
organisation of windows, menus, and toolbars. In order to 
simplify the development process, some facilities of the 
GP project, [11], namely the GP Explorer, have been used. 

The main purpose of the alarm console is to receive, 
display and manage FS information in an easy and 
convenient way. The main modules of the alarm console 
are configuration, display and management of the 
different FS lists, namely the: active, memo, inhibit, 
highlight, etc. Configuration is the personalisation of the 
alarm console in terms of: FS category selection; filter 
definitions; FS display fields in terms of their properties; 
termination behaviour; etc. Each user can define one or 
more sets of configurations, one of which can be defined 
as ‘default’. This will be used when the user starts a 
console. If no ‘default’ is defined, no connection with the 
business tier will be made and no active FS’s will be 
received. All configuration details are persisted in the 
business tier. The configuration window displays a list of 
users and their configurations using the GP explorer. A 
user can select and browse any configuration, but if 
another user’s configuration is used, a copy is made and 
attached to the user’s profile. Only configurations in a 
user’s profile can be deleted or modified. To enable a 
‘casual’ user to have access to FS information, a ‘guest’ 
user has been defined. 

The definition console will be reserved for 
administrators of the different FS domains and will be 
used to manage FS definitions. A parallel programmable 
interface, the Laser-Definition API, will be made 
available to allow on-line changes to FS definitions. 

TIME SCALES 
The mandate for the work was published at the end of 

2000. 2001 and part 2002 were spent gathering the user 
requirements and performing the technological 
evaluation. Work started in earnest on the vertical, slice, 
prototype, during 2002. Although a working prototype 
will be ready by the end of this year, it is clear that feed- 
back from users, particular in the alarm console area, is 
essential and practical demonstrations will be given to 
finalise the design. An operational system should be 
available by the end of 2004, enabling the current system 
to be switched off. 

CONCLUSION 
Much progress has been made, but it is clear that the 

technologies involved require a steep learning curve. 
There still remain important areas such as clustering and 
redundancy, which are new and require further 
investigations, but we are confident that we will be able to 
provide the functionality, performance and reliability 
required for the operational system. 

ACKNOWLEDGEMENTS 
We would like to thank N. Polivka for her important 

contributions during the technology survey phase and the 
modifications to bridge the current system to the new. 

REFERENCES 
[1] K. Kostro, J. Andersson, S. Jensen, F. Di Maio, N. 

Trofimov, “The Control Middleware at CERN-Status 
and Usage,” This proceedings. 

[2] http://proj-laser.web.cern.ch/proj-laser/ 
[3] M.W.Tyrrell, “The LEP Alarm System,” ICALEPCS 

1991 
[4] User Requirement Doc., CERN, SL-Note-2002-4CO. 
[5] http://java.sun.com/j2ee/ 
[6] http://java.sun.com/products/jms/ 
[7] http://java.sun.com/products/ejb 
[8] http://www.oracle.com/apperrver/ 
[9] http://www.sonicsoftware.com 
[10] http://www.netbeans.org 
[11] V. Baggiolini, L. Mestre, E. Roux, K. Sigerud, “The 

CERN GUI Platform for GUI in Java,” This 
proceedings. 

 

 

Proceedings of ICALEPCS2003, Gyeongju, Korea

582


	MOVING TOWARDS A COMMON ALARM SERVICE FOR THE LHC ERA
	INTRODUCTION
	INITIAL INVESTIGATIONS
	SYSTEM OVERVIEW
	The Architecture
	The Technology

	THE RESOURCE TIER
	THE BUSINESS TIER
	THE CLIENT TIER
	TIME SCALES
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES


