
THE BABYLONIZATION OF CONTROL SYSTEMS PART II –
THE RISE OF FALLEN TOWER

P.Duval, Z. Kakucs – DESY;
D. Golob, M. Kadunc, I.Kriznar, M. Plesko, A. Pucelj, G. Tkacik – JSI and Cosylab,

Abstract
The standardization in PC and network technology has

produced a distinct (for want of a better term)
"babylonization", where islands of control exist in perfect
ignorance of each other even though they might belong to
the very same facility. This is due in part to commercial
equipment, which often comes with its own control
software, commercial SCADA systems and to the many
excellent but different solutions for control systems,
which have been developed in the accelerator control
community. A control systems integrator frequently has
to make decisions with long-term and far-reaching
consequences. Often a pragmatic approach is to allow
resourceful engineers to use the best available tools to
solve controls problems and then to integrate their
solutions into the control system. It usually turns out that
integration, if not done systematically, amounts for the
largest part of the work. There are usually many ways to
do this, for instance defining a software bus, using
gateways, or simply allowing apples and oranges to
peacefully coexist. In this paper, we will examine most of
the available tools in our community for the integration of
control systems, detailing the merits of each approach as
well as some popular controls systems and components.
We will provide a table comparing the most important
features of open source accelerator/telescope and
commercial SCADA systems. We will demonstrate that it
is possible to mix them in order to benefit from the best
part of each.

DDD

JDM

MEDM

TANGO

CosyBeansAbeans

ACOP

 API visual support
CLIENT

commu-
nication

 driver data
SERVER

ACS

chan. acc.

TINE

CDEV

COACK

DOOCS

EPICS

Figure 1: A comparison of control system packages and
the layers they cover.

To illustrate the difficulties (and dangers) of making
comparisons such as these we note that, just comparing
TINE and EPICS is already like comparing apples and
oranges. TINE is more of a communication protocol and
should be compared to channel access. Note also that the
EPICS database is really at the lowest level of the control
system. One should be aware of this point, because when
people say EPICS, they mean the whole lot of very
unrelated things like the database, the channel access
protocol and the MEDM GUI tool. The database is a
viable idea and - apart from some historic glitches that are
being addressed in the upcoming versions, like the short
limit for names, poor debugging options - a useful
approach for I/O integration. Such low-level IO
integration is frequently not found in CS packages,
DOOCS being a notable exception. The problem for a CS
integrator might be the EPICS extensions, which one is
forced to use by taking EPICS or one is forced to develop
with the limited API that is available.

AVAILABLE CONTROL SYSTEMS

Control System from the Community
There are several competing control system (CS)

components, who look very similar but in fact address
quite different issues in different ways: EPICS, COACK,
TINE, DOOCS, ACS, TANGO, ACOP, CDEV, Abeans,
CosyBeans, XAL, Databush, just to name those that are
advertised as packages1.

The different coverage of control system packages is
shown in figure1. It cannot emphasize the features and
services that are provided. We have therefore prepared a
table, with input from authors and users of the respective
packages. The table itself would exhaust the page length
requirements of the proceedings. It is nonetheless
illuminating and we therefore refer the reader to reference
[1] for a full comparison and allude to certain aspects
below.

Industrial Control Systems
There are several terms used in different occasions,

such as industrial control systems, commercial control
systems, SCADA (supervisory control and data
acquisition) or DCS (distributed controls systems) and
often people just use the terms to distinguish them from
control systems that have grown in our community and
are free. Maybe the biggest difference among those two

1 For the sake of example we will be mentioning only some systems,
which does not represent an endorsement by the authors, nor is it any
reflection on anybody else's system. We will also not further discuss
XAL and Databush, which are packages for machine physics
calculations.

Proceedings of ICALEPCS2003, Gyeongju, Korea

583

groups is who the various systems are aimed at. Industrial
systems are aimed at people who just want to concentrate
on the application, with as little programming – often
preferably none - as possible, while free systems are
aimed at the people who prefer flexibility over anything
else.

There are less differences among all those industrial
systems than 10 years ago: even very simple PC-based
SCADA systems now at least in one way or the other use
internet technology to allow for some distributed
processing. Other commercial systems, notably Vsystem
from Vista, which originated from our community, are
highly optimized for distributed controls and provide
excellent data throughput and visualization performances.
Vsystem has a richness in the tools that no one else has in
the business.

However, often one chooses a commercial system not
for performance but for other reasons. The DSC from
National Instruments, for example, is used together with
LabView, a preference of many engineers. Also under
Linux, there are several good SCADA systems. VisPro,
being one of them, is popular for its scalability that
exceeds conventional SCADA systems and also for its
flexibility, as it allows easy linking of programming code.

Mixing Control Systems
As we see, each package has certain advantages,

unmatched by any other package. In the applications
domain (alarm manager, GUI, logger, trending, scripting
etc.) however, all packages claim to be pretty much
complete. Nonetheless, the quality, flexibility,
configurability, etc. of the tools provided is sometimes
very different, and can be a motivating influence for
choosing one system over another.

So, apart from simply allowing religious freedom to
reign, where each engineer can use his preferred package
(but the systems coordinators nonetheless have to get the
accelerator to operate), there are actually good reasons to
mix the control systems in order to get best-of-breed
services and applications.

TRANSLATORS OR INTEGRATORS?
When the control system coordinator is faced with the

problem: “How do I make my apples look like oranges,”
he can take one of three tacks. 1) Write an ‘apple-to-
orange’ gateway, which is a separate process utilizing the
client/server APIs of both systems. 2) Use client-side
‘apple-plugs’ so that while client program developers
think they are talking to oranges, they are really speaking
native ‘apple’. 3) Use server-side ‘orange-plugs’ so that
server IOCs think they are being addressed by apples but
are really speaking native orange.

Whereas each approach might have its time and place,
most benefits occur for case 3 (server-side plugs).Here
one knows that the server-side systematics (local alarm
server, local history server, queries, etc.) are guaranteed
to be there. The data in this case are as close to the source
as possible.

Client-side plugs are also attractive and perhaps the
next best thing. An excellent solution integrating with
LabView and DSC is presented in another paper by
colleagues from the GSI [3]. Gateways can also solve
data acquisition problems but tend to bring a host of
intermediate problems with them (e.g. connectivity
problems might be more difficult to locate if there is
another link in the chain).

Also note, in the case of client-side plugs, if the plug
you are using doesn't cover the functionality of your
system, you lose! For instance, with TINE, data transfer
occurs through data “links,” where the access mode can
be specified. Thinking in terms of “monitors”, you can
specify the kind of monitor: Do I want 'send on change'?
(the classic EPICS monitor), or do I want 'send on poll'?,
or do I want the monitor as a network subscription? (a
real multicast to my multicast group), or do I want the
monitor to go over a persistent TCP connection? With
client APIs with simple monitorOn() and monitorOff()
methods, if would be difficult if not impossible to define
these different categories of monitors as a developer .

In general, plugs allow you to use your preferred
applications, but you are limited to existing services and
tools, but this is exactly the area, where everybody has
weak points. Wouldn’t it be nice to use the best tools for
each single application? That requires just a translator
(server-side plug) to each CS package at the lowest
possible levels.

EPICS, TINE and DOOCS Translator
Suppose we want a TINE view of the EPICS IOCs in

the system. We can
1) run EPICS2TINE directly on the IOC or
2) set aside a dedicated machine which interfaces to

the IOC via channel access and runs a TINE server
process for the TINE view.

The first case doesn't speak channel access at all and
accesses the EPICS database directly (and is thus a
translation layer on the server) and the second case is a
true gateway. In a similar vein, the current DOOCS
servers are bi-lingual offering the traditional SUN RPC
interface as well as a TINE interface. Indeed DOOCS can
run entirely on TINE (or rather TINE can run in a
DOOCS context). This approach is in contrast the
external gateway approach traditionally used in the past.

With EPICS2TINE, we have also elegantly solved the
16 Kbyte barrier (i.e. 4000 floats) of the old EPICS
release, which has bothered us here at DESY, while using
EPICS to handle certain transient-recorder archive
channels (which have arrays of data which far exceed
this). Thus EPICS IOCs are immediately available to say
DOOCS DDD clients. Using TINE2EPICS, the DOOCS
IOCs are likewise available to EPICS MEDM clients.
Pure TINE clients can of course access either. Likewise,
running Abeans with a TINE plug will see all IOCs as
TINE servers irrespective of their parentage.

Proceedings of ICALEPCS2003, Gyeongju, Korea

584

Abeans plugs for TINE2 and EPICS
The Abeans and CosyBeans offer many advantages and

features for developing client applications as described in
detail in [2]. Any CS protocol and model can be attached
to Abeans through their pluggable interface. Cosylab has
thus developed a TINE plug for DESY and an EPICS
plug for the SNS (Spallation Neutron Source at the Oak
Ridge National Lab), which is also going to be used at the
Diamond light source.

Abeans allow different models to represent the
structure of the control system. Models use plugs to get
data from a specific control system. At DESY, Diamond
and the SNS, we used the Abeans “channel” model (i.e. a
narrow interface access model), which consists of
namespaces and channels, to create a plug to the TINE
Java class, or to the JCA EPICS class, respectively.

A Future Scenario
The “best of all possible worlds” surely means different

things to different control systems coordinators. Thus
there are many examples of mixing and matching that are
not only possible but make good sense.

Consider the following: We integrate VME I/O cards
with EPICS (because it has the drivers), use TINE as the
access protocol (for multicast capability), DOOCS DDD
or COACK (for developing synoptic GUI panel), and
ABeans/CosyBeans (for a device Table). One can still
display the EPICS alarm table via channel access. Any
number of applications using Java + ACOP, or Abeans,
or MEDM or Visual Basic + ACOP could run
independently and in harmony.

Or, one might just take professional quality tools from
SCADA systems and write the translator or plugs. An
estimate of Peter Clout from Vista is that it would take
only 2-4 weeks per Vsystem tool to make usable with
channel access or other similar protocols [4].

CONCLUSIONS
There is not much need for competition on the system

level – all CS package developers should rather work
hard to get good general-purpose applications and tools.
Because this is the area, where we are the weakest.

Maybe in the near future, we won't have to compete,
but can choose a component that is best for a particular
problem thanks to the integration tools such as
TINE2EPICS or Abeans plugs. To return to the apple-
and-oranges metaphor: choose your favorite, but if you
have to mix apples and oranges because you have apples
but someone has this great orange from which you could
really benefit, then it's no big deal when there are ready
solutions to make an orange look like an apple.

2At DESY Windows GUI applications make use TINE on ACOP or a
native Visual Basic API In the true “babylonization” spirit, ACOP has in
fact also been fitted with both TINE plugs and Channel Access plugs,
but is much simpler in scope than Abeans.

ACKNOWLEDMENTS
We thank all the authors of control systems that took

their time to fill out the control system feature list and for
many useful ideas that they gave us during discussions.

REFERENCES
[1] http://kgb.ijs.si/KGB
[2] I.Verstovsek et al., The New Abeans and CosyBeans:

Cutting Edge Application and User Interface
Framework, PCaPAC02, Frascati 2002.

[3] D. Beck, H. Brand, F. Herfurth, CS – A Control
System Framework for Experiment (not only) at GSI,
this conference,.

[4] P. Clout, private communication

Proceedings of ICALEPCS2003, Gyeongju, Korea

585

	THE BABYLONIZATION OF CONTROL SYSTEMS PART II – �
	AVAILABLE CONTROL SYSTEMS
	Control System from the Community
	Industrial Control Systems
	Mixing Control Systems

	TRANSLATORS OR INTEGRATORS?
	EPICS, TINE and DOOCS Translator
	Abeans plugs for TINE� and EPICS
	A Future Scenario

	CONCLUSIONS
	ACKNOWLEDMENTS
	REFERENCES

