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Abstract 
CELLS (Consorcio para la construcción, equipamiento 

y explotación del Laboratorio de Luz Sincrotrón), the first 
Spanish synchrotron is now in the latest stages of its 
design, previously to its construction. The control system 
for this 3rd generation light source is proposed to be done 
using software models, and object oriented techniques. In 
this paper the main ideas of this methodology are 
presented as well as the preliminary ideas of the 
development process for the Spanish synchrotron control 
system, with its analysis and design models. In this 
methodology the user requirements are captured with the 
use-case diagrams and specified by the activity diagrams. 
The design models are realized by the class diagrams for 
the static structure and the sequence diagrams and state 
machines for the dynamic structure. The first ideas for the 
architecture are also presented, as well as the software 
organization in packages. Also, a prototype for a detector 
data acquisition system using this methodology has been 
developed, and the experiences are also described. Finally 
the advantages of this methodology are discussed. 

THE SPANISH LIGHT SOURCE 
The first Spanish synchrotron radiation facility [1] has 

been approved, and it will be built in the area of 
Cerdanyola del Valles (Barcelona), Catalunya, Spain. 
This synchrotron is funded by the Spanish Ministry of 
Science and Technology and the Generalitat of Catalunya 
(Catalan Government) with a 50% contribution from each 
party. The construction has just started and, it is expected 
that light will be delivered to the beamline users in 2010.  

The facility will have the classical layout, with a linear 
accelerator, a booster and a storage ring, connected by 
two transfer lines. The storage ring will be at least 2.5 
GeV in energy, quite possibly 3 GeV, and will have at 
least 12 sections for insertion devices. Useful radiation for 
photon energies of up to 25 keV is in the design 
specifications. The possibility to have nominal energy 
injection and mini-beta sections for low gad ID’s is now 
under serious consideration. The aim is to achieve 
emittances in the 5 nmrad region or better. Note that these 
are somewhat better specifications that those initially 
presented to the authorities [2] and which formed the 
basis of project approval. The capital project 
contemplates the building of five beam lines initially, 
even though the total possible volume is at least 36 
beamlines. The process of defining the scientific and 
technical objectives for these first five beam lines has 

started through the usual procedure of wide consultation 
to the future user community and appropriate experts.  

THE DEVELOPMENT PROCESS 
For simple systems, it is perfectly feasible for a single 

person to sequentially define the whole problem, design, 
build the software, and then test the end product. 
However, in complex systems, as a light source is, a team 
of analysts, designers and programmers will be required 
to build the system, and their activities should be 
coordinated. In this case a software development process 
is needed in order to transform the user requirements into 
a software product. Among several processes (extreme 
programming [3] or the classical programming, like 
PSS05 [4]), we propose the usage of the unified process 
[5], which is a process based on a modelling language that 
is iterative, architecture centric and use-case driven. It is 
organized around four phases: inception, elaboration, 
construction and transition. It is further organized around 
five workflows:  

 
• Requirements: describes what the system should do 

for its users and under what constraints. 
• Analysis: analyses the requirements, described in the 

previous workflow, by refining and structuring them. 
• Design: formulates models that focus on non 

functional requirements and the solution domain, and 
that prepares for the implementation and test of the 
system. 

• Implementation: the essential purpose of this 
workflow is to implement the system in terms of 
components, that is, source code, scripts, binaries, 
executables, and the like. 

• Test: verifies the result from implementation by 
testing each build, as well as final versions of the 
system to be released. 

 
This model developed during the unified process 

provides a clear understanding of the requirements 
between the users and the developers, allows the selection 
of a suitable architecture and facilitate the management of 
the project. The model provides semantically rich 
representations of the software system under 
development, it will be used in the communication 
between the different groups involved in the project, and 
it will be used in the documentation. Furthermore, a good 
model of the control system will facilitate its maintenance 
and its future upgrades, as well as its testing and 
commissioning. Finally, the model will allow the ___________________________________________  
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identification of the risks, and its mitigation before the 
point at which they come up in the development process. 

The project will be organized in packages in the model 
what will ease the assignment of tasks within the team. In 
addition, it will allow to clearly specify the parts that 
could be subcontracted to external companies. Also, this 
organization will ease the software sharing and re-using. 

In this paper we present a prototype developed with this 
methodology (unified process), following all the 
workflows described. The experiences developing this 
prototype are described.  

For the Spanish facility control system the model itself 
is introduced with the use cases and actors. Afterwards 
the identified packages and analysis classes are reviewed. 

The modelling language: UML 
We have created the model in UML [6] (Unified 

Modeling Language) because it is an industry-standard 
language for specifying, visualizing, constructing, and 
documenting the artifacts of software systems. This 
language appeared in 1996 by G. Booch, J. Rumbaugh 
and I. Jacobson, and it is a merge of several notations 
existing at that moment, most notable Booch, OOSE 
(Object-Oriented Software Engineering) and OMT 
(Object Modeling Technique). Today is of widespread 
use in software projects. This language was accepted by 
the OMG (Object Management Group) for its 
standardization and maintenance. 

There are lot of CASE (Computer Aided Software 
Engineering)-tools which support UML. We have 
evaluated two of them: Umbrello v1.2 [7], an open source 
tool running under Linux and Rational Rose v6.5 [8], a 
commercial tool running under Windows. We have 
decided to develop the project using the second one, 
because it is closer to the UML standard (it contains all 
the diagrams and their artefacts) and it is more 
professional (better finished). 

USER REQUIREMENTS CAPTURE 
The purpose of this workflow is to drive the 

development toward the right system. This is achieved by 
describing the system requirements (i.e., the conditions or 
capabilities to which the system must conform) well 
enough so that an agreement can be reached between the 
users (machine physicists and operators) and the 
developers on what the system should and should not do. 

The requirements are captured in UML by the use-case 
diagram, which describes what the system does for each 
type of user. In this diagram are two different artifacts: 
actors (users) and use-cases (service provided by the 
system). 

Identifying the actors, we have identified the external 
environment of the system. They could be humans 
(operators, machine physicists and scientists) or hardware 
systems (vacuum devices, diagnostics, magnet power 
supplies, etc). 

Any use case specifies a sequence of actions, including 
variants, that the accelerator control system performs and 

that yields an observable result of value to a particular 
actor. 

The use cases capture the functional requirements of 
the facility. But the non functional requirements, such as 
performance, availability and security are also present in 
the diagram associated either to a particular use case 
(tagged value) or with any particular one (note).  

Picture 1 presents the main use-case diagram, where the 
main uses cases in a synchrotron radiation facility are 
presented. 

These use cases describe what the control system does 
but it does not specify how it does it. Then we have 
specified the behaviour of every use case by describing a 
flow of events in text: it includes how and when the use 
case starts and ends, the basic flow and alternative and 
exceptional flows of the behaviour. 

The human actors interact with the system using the use 
cases, as it is shown in the figure 1. Also the use cases 
collaborate with the subsystems (diagnostics, magnet 
power supplies, RF, vacuum, timing, facility interlocks, 
beamline control, experimental DAQ), although the 
connections are not shown in the previous diagram. These 
subsystems will talk with the hardware actors. 

 

 
Figure 1: Main use case diagram. 

In this paper we have picked up one of the most 
important use cases for a synchrotron (Inject Beam) and 
we have developed it with more detail. This is presented 
in figure number 2. 

This use case incorporates the functionality of three 
other use cases (Control Linac, Control Booster and 
Control Storage Ring). This is modelled by the 
<<include>> relationship. 
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The injection could be done with top-up, which is a 
special injection mode. This exceptional behaviour is 
modelled by the <<extend>> relationship. 

 
Figure 2: Inject Beam use case diagram. 

ANALYSIS MODEL 
The analysis workflow refines the use cases (use case 

realization) described in the previous diagram, in order to 
achieve a more precise understanding of the requirements. 
So the analysis model will be created, and it will grow 
incrementally as more and more use cases are analysed. 
This is a conceptual model, as it is an abstraction of the 
system and avoids implementation issues (it is applicable 
to several designs). 

The next step is to refine the primary way in which the 
operator executes the Inject Beam use case. This is done 
in the activity diagram (see figure 3), which is essentially 
a flowchart, showing flow of control from activity to 
activity. 

 
Figure 3: Activity diagram for the Inject Beam use case. 

This diagram has different activities executed 
sequentially. The activity “Booster state to ON” has a 

nested diagram for modelling the waiting for the end of a 
certain action (stability of the booster magnet power 
supplies), which has a branch to specify an iteration. 

This activity diagram presents the main sequence of 
actions, although exceptional flow of events (scenarios) 
has been specified. 

DESIGN 
The design model describes the physical realization of 

the use cases by focusing on functional and non-
functional requirements, together with other constraints 
related to the implementation environment. 

Architectural design 
The purpose of the architectural design is to define a 

structure that will be preserved through the entire 
software life cycle. Due to the complexity of the project, 
we propose the usage of a layers pattern (see figure 4) that 
defines how to organize the design model in layers, 
meaning that components in one layer can reference 
components only in layers directly below. It reduces 
dependencies in that lower layers are not aware of any 
details or interfaces in the upper layer. Moreover, it helps 
us to identify what to reuse, and it provides a structure to 
help us make decisions about what to buy (and 
subcontract) or to build ourselves. 

 
Figure 4: Layered architecture. 

This system has individual applications at the top 
(application-specific layer). Below it, there is the 
application-general layer, which contains subsystems [9] 
that are not specific to a single application and can be 
reused for many different applications within the same 
domain. These design subsystems decompose the 
implementation work into more manageable pieces 
handled by different development teams, possible 
concurrently. The architecture of these two layers is 
created from the architecturally relevant use cases (as the 
Inject Beam is). 

The architecture of the lower two layers (framework 
and system software) can be established without 
considering the details of the use cases. In this approach 
are presented the several candidates under study. 
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Design class 
Once the design model has been decomposed in more 

manageable pieces (design subsystems), we have created 
and developed its components: the design classes. They 
will be characterized by a static view (class diagram) and 
a dynamic one (statechart diagram). In the following the 
magnet power supply class with its sub-classes are 
presented, which belong to the magnet power supply 
subsystem. 

The class diagram (see figure 5) shows a set of classes, 
interfaces, collaborations and their relationship. It is a 
structural diagram to visualize, specify, construct and 
document the static aspects of a system. 

 
Figure 5: Magnet power supply class diagram. 

This diagram contains an abstract class 
(MagnetPowerSupply) with the basic operations and 
attributes common to all magnet power supplies. Some of 
the operations are defined virtual (as ReadCurrent) so the 
implementation will be particular to any sub-class. 

 
Figure 6: DC magnet power supply state machine. 

There is a state machine associated with any class. A 
state machine is a behaviour that specifies the sequences 
of states an object goes though during its lifetime in 
response events (or commands), together with its 

responses to those events. The state machine is used to 
model the internal behaviour of an object, as it is show in 
figure 6 for a DC magnet power supply.  

This state machine has a composite state (cycling), 
where is contained a nested state machine. Also, a guard 
condition has been added to indicate the transition that 
should be taken from the ON state when the command 
“setCurrent” is executed. It takes the value of the internal 
attribute “cycleOnSetting” to determine this condition. 

We would like to note that this statechart specifies a 
machine that runs continuously; there is no final state. 

Dynamic view 
Now that we have an outline of the design classes 

needed to realize the use case, we will describe how their 
corresponding design objects interact. This is done using 
sequence diagrams containing the participating actors, 
design objects, and message transmissions between them. 

The messages sent between objects are the public class 
methods defined in the in the class diagram: the tool 
detects which are the public methods of the class and they 
are the only offered. But an object could send a message 
to itself. In this case, also the private and protected 
methods could be sent. 

The picture 7 presents a sequence diagram for the 
injection in the storage ring. The objects that participate in 
the interaction are at the top, across the X axis, placing 
the actor (Operator) that initiates the interaction on the 
left, and increasingly more subordinate objects to the 
right. The messages sent and received by objects and 
actors are placed along the Y axis, in order of increasing 
time from top to bottom. The focus of control is a tall, 
thin rectangle that shows the period of time which an 
object is performing an action. The top of the rectangle is 
aligned with the start of the action; the bottom is aligned 
with its completion. 

 
Figure 7: Sequence diagram for the injection in the 

storage ring. 

It represents all the commands sent to the power 
supplies and in which order when the operator activates 
the injection in the storage ring. Note that for any 
message sent by the SRInjection object to the 
PulsedPowerSupply objects, these send a message to the 
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equipment through a fieldbus (msg_ack). When the 
hardware finishes the action, returns an acknowledgment 
to the object sending the message. 

DAQ SYSTEM PROTOTYPE 
We have developed a data acquisition system (DAQ) 

for a gas filled detector following the unified process 
introduced before. This project has been used as prototype 
to get real experience following the development 
workflows and using the UML diagrams. 

In the requirements capture, three actors (Beamline 
User, Acquisition Card and Storage Area) and eight use 
cases (Start Acquisition, Collect One Image, Configure 
System, Calibrate System, Monitor Acquisition, View 
Image, Stop Acquisition and Save Images) were 
identified and described, with the help of the users, to the 
level required for the development. 

Given the not so big size of the application, the analysis 
and the design phases were carried together. The class 
diagram contains two classes: a device server 
implemented in C++ and graphical interface in Python.  

After the experience gained during the project work, we 
are convinced that the UML diagrams help us in finding a 
common understanding with the users of what the system 
should do. The use case artifact and the graphical 
representation were fundamental in the discussions with 
the beamline users about how they should interact with 
the acquisition system and with the hardware engineers 
about the cards. Achieving a good communication with 
them allowed us a clear understanding of the problem, 
which was the key for developing the right software 
system.  

The class diagram became central technique for the 
object-oriented analysis. It also has a greatest range of 
modelling concepts. Together with the sequential 
diagram, it allows the refinement of the class, after a 
couple of iterations. 

Finally, the UML diagrams were very useful for the 
generation of documentation, both about the architecture 
and its components (classes).  

For the near future, we would like to investigate further 
other facilities provided by the tools. The automatic code 
generation from the class and component diagrams will 
facilitate the synchronization of the model and the code. 
We also consider very important the inclusion of a n 

Integrated Development Environment (IDE) to shorten 
the cycle of editing-compiling-testing the code. Finally, 
our configuration management tool will also have to be 
integrated, specially bearing in mind that the process has 
to scale up to the development for the full synchrotron. 

CONCLUSIONS 
The unified process, which is being proposed as for the 

software development of the control system for the 
Spanish light source does not impose any restriction in the 
software development process. The main difference with 
the traditional techniques is that the program is primarily 
manifested as a model. The UML model generated during 
the unified process facilitates the understanding between 
the users and the developers, choose a suitable 
architecture and facilitate the management of the project. 
Furthermore, a good model of the control system will 
facilitate its maintenance and its future upgrades, as well 
as its testing and commissioning. And finally, this model 
will be primary used for documenting the system. 

We have developed a C++ and Python application 
following this model-driven development strategy. The 
development of this application has confirmed the 
advantages previously described of this methodology, and 
that confirm it as a good candidate for developing the 
control system of the Spanish synchrotron. At the 
moment, we are working at extending our experience to 
cope with all the tools that will be required during the 
development. 
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