
A SHARED MEMORY INTERFACE BETWEEN LABVIEW AND EPICS*

D. Thompson and W. Blokland, ORNL, Oak Ridge, TN, USA

Abstract
The diagnostics systems of the Spallation Neutron

Source project are based on rack-mounted PCs with off-
the-shelf and custom PCI hardware and LabVIEW. About
twenty out of the total of three hundred systems are al-
ready installed and have been integrated into the EPICS-
based control system. LabVIEW communicates with the
EPICS IOC using a simple shared memory interface im-
plemented in a dynamic linked library (DLL) based on
previous work by Los Alamos National Laboratory. The
DLL supports events and buffered communication of sca-
lar data types such as integers, floats, and booleans, as
well as single dimension arrays and strings. The Lab-
VIEW programmer needs only minimal EPICS knowl-
edge to use the interface. At a rep rate of 6 Hz, the writing
and transmitting of 4 arrays of 1025 double precision
variables plus twenty individual doubles give a 3% CPU
load on a 2 GHz PC. This is fast enough for the planned
applications. At higher rep rates, the interface comes
close to utilize the full bandwidth of a 100 Mbit/sec
ethernet connection. In this paper we describe the imple-
mentation and performance of the shared memory inter-
face on both the EPICS and LabVIEW side.

INTRODUCTION
The diagnostics systems are designed as Network At-

tached Devices (NAD), see [1], and implemented using
rack-mounted PCs. The PCs currently run Windows as
their operating system and LabVIEW as their program-
ming environment. The NADs communicate using EP-
ICS, see [2] with the rest of the control system. The ini-
tially deployed NADs used the ActiveX/EPICS interface,
see [3]. Starting with version 3.14 of the EPICS IOC,
other platforms than VxWorks, including Windows, are
now supported. Switching to IOC combined with a
Shared Memory Interface now gives full compatibility
with the Controls Group’s IOC nodes, increased perform-
ance, and support for platforms other than Windows. The
Shared Memory Interface described in this paper has a
compatibility layer to work with the shared memory inter-
face as implemented by LANL. LANL used a shared
memory layer to pass data to the ActiveX/EPICS inter-
face just in case one wanted to switch to a different EP-
ICS interface.

THE SHARED MEMORY INTERFACE
The Shared Memory Interface (SMI) has three compo-

nents: a dynamic link library (DLL), modified IOC device
support, and a LabVIEW library.

Figure 1: The Shared Memory Interface.

The DLL itself is not dependent on EPICS or Lab-
VIEW and can be used without either. Data is shared
equally between applications attached to the DLL. Figure
1 shows how the Shared Memory DLL connects Lab-
VIEW to EPICS using a common interface.

In addition to providing the reading and writing of data,
the DLL also supports the event handling. One applica-
tion can signal another application waiting on the data to
synchronously process the data.

The DLL supports two modes of operation. Data can be
shared asynchronously supporting a blackboard data
model, or synchronously supporting a message-passing
model. All data can be read from the DLL asynchro-
nously but only data inserted into the DLL as synchro-
nous data can be read synchronously.

The data structure inside the DLL uses multiple buffers
even for asynchronous data. In asynchronous mode, data
is always read from the last buffer available. If data is
simultaneously being written to the same named variable,
the operations will be using different buffers. Data locks
are sparingly used in conjunction with sequence tags to
prevent and detect buffer errors. In the case of a buffer
overrun, where data is written to a buffer being used by a
read operation, the read operation will detect that the se-
quence number changed and will re-copy the buffer into
the reader’s data area. This rarely happens on a single
CPU system.

In synchronous mode, data items are written to buffers
as before but the buffer pointers are advanced only when
a processing event is sent with a time stamp. Synchronous
readers also have a buffer pointer and can only read data
from the head of a named buffer and only after receiving
the processing event for that data. The DLL implements
this behavior in a ring buffer that has a user adjustable
size. The ring buffer holding the data in conjunction with

* The Spallation Neutron Source (SNS) project is a partnership of six
U.S. Department of Energy Laboratories: Argonne National Labora-
tory, Brookhaven National Laboratory, Thomas Jefferson National
Accelerator Facility, Los Alamos National Laboratory, Lawrence
Berkeley National Laboratory, and Oak Ridge National Laboratory.
SNS is managed by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 for the U.S. Department of Energy.

Proceedings of ICALEPCS2003, Gyeongju, Korea

275

the processing event message acts as a first-in first-out
buffer holding data for more than one trigger event. Each
time a reader receives an event, a new time stamp is made
available along with the head of each process variable
FIFO with waiting data. The reader will be blocked wait-
ing for data if no new data is waiting in the FIFOs. The
DLL supports the scalar and array data types of char,
uchar, short, ushort, long, ulong, float, and double, and
the data type string. The matching EPICS record types are
ai, a0, longin, longout, bi, bo, waveform, and string.

INTEGRATING THE SHARED MEMORY
WITH EPICS IOC

Our main focus was to integrate LabVIEW with EPICS
and we have therefore implemented several functions in
the DLL to support EPICS. Special attention was given to
maintain time correlation of data through the use of time
stamps and time stamped events.

The IOC uses the Channel Access protocol for commu-
nication with other nodes and provides the infrastructure
to manage the creation and processing of data structures
known as records. Records are the data types of EPICS
and support both scalar data and arrays bundled with at-
tributes such as the process variable’s name, processing
rates, units, and alarm limits. The DLL supports these
attributes.

Two device support routines, one for initialization and
one for processing are required for each record type that
is supported by the IOC. These routines are modified to
make calls to the DLL.

Initialization
An EPICS IOC starts by loading the binary software

image and then a ‘dbd’ file containing a description of all
the data records and enumerated types used in the in-
memory database. The instances of variables are defined
in ‘db’ files. During processing of a ‘db’ file, record and
device specific routines are called to initialize the record.
The DLL is called during each record instantiation to cre-
ate the shared memory variable and link the record data
field to the shared memory variable. In the diagnostics
applications at SNS the IOC is responsible for completely
initializing the DLL using data in the ‘db’ file. The Lab-
VIEW program or any other program could initialize the
shared memory if desired.

Operation
Data arriving from Channel Access or from a data base

processing causes an output record to process triggering
device support. A call is made by device support to the
DLL writing the data to the shared memory. The EPICS
timestamp or, optionally, the system timestamp is passed
along to the shared memory variable and made available
to LabVIEW.

Data from the LabVIEW application can be processed
asynchronously by specifying a scan rate in the “SCAN”
attribute of the EPICS record. If synchronous operation is

desired then the “SCAN” field is set to “I/O interrupt”.
The IOC core treats processing events from other DLL
clients as if an interrupt had arrived in a hardware IOC.

INTEGRATING THE SHARED MEMORY
WITH LABVIEW

Many of the functions of the DLL are called from Lab-
VIEW using the Call Library Node function. These func-
tions include

1) read and write to variables,
2) find and get information about variables, and
3) set and receive events (blocking and non-blocking).

A software suite has been created to provide the pro-

grammer with documentation, tools, and templates to
write LabVIEW code with the Shared Memory Interface,
see [1].

To access the shared memory functions, the LabVIEW
program needs an index identifying the particular vari-
able. This is done by the function Name2Id that resolves
the variable name to an index. On the IOC side of the
shared memory, the variables names are the Process Vari-
able (PV) names and these must be defined before starting
the IOC by means of above mentioned ‘db’ file.

The LabVIEW routine that performs the name resolv-
ing operation is called GetPVs. GetPVs in effect also de-
clares which variables the programmer is interested in.
With a few EPICS specific details about the variable,
such as scan type and scan rate, added to GetPVs, the
utility GenerateDB has enough information to generate
the ‘db’ file, the IOC startup command file, and a spread-
sheet documenting the generated variables. This mecha-
nism provides a single point from where the shared mem-
ory variables and EPICS PVs are defined; by the Lab-
VIEW programmer and in the LabVIEW code. An exam-
ple of a GetPVs code snippet that finds the index of a
variable but also declares the variable is shown in Figure
2.

Figure 2: The Resolving and declaring of the PV names.

An example of the ‘Initialize’ state in a LabVIEW pro-
gram is given by Figure 3. LabVIEW starts the IOC using
a command file and registers the events (EPICS Interrupt
Groups) it needs to receive. The IOC will now start and
instantiate the shared memory variables based on the ‘db’
file generated from the GetPVs routine. Next, the GetPVs
routine will find and store the variable’s indices into a
LabVIEW global. The shared memory interface is now
established and the LabVIEW program can continue.

Proceedings of ICALEPCS2003, Gyeongju, Korea

276

Figure 3: The startup state of a LabVIEW program.

PERFORMANCE
The performance of the Shared Memory Interface is

listed in Table 1. The times to write or read the array of
double precision variables are measured using the built-in
LabVIEW profiler on a 2 GHz Pentium 4. The profiler
gives times excluding other processes. When including
other processes and program looping overhead, the read
and write times increase by about a factor of two. The
throughput is measured over a 100Mbit/s ethernet connec-
tion from the above-mentioned PC to a PC with a 2.4
GHz Pentium 4 running Windows XP. The client PC uses
the LabVIEW Channel Access tools, also written at SNS,
see [4]. The throughput for the larger array sizes is close
to the practical maximum of the ethernet connection. The
client PC has a CPU load of less than 5% when receiving
1024 doubles at 500Hz (about 4 Mbytes/sec) while the
server PC has about a 10% CPU load. The performance
numbers are excellent and suffice more than enough for
the typical SNS application running at 6Hz. A high
throughput system like a Beam Current Monitor or Beam
Position Monitor generates data with about 10 double
precision variables and up to four arrays of up to 1024
doubles. Communicating this data to one client at 6 Hz
results in a 3% load on the CPU. Enough CPU time is left
for data-acquisition and processing, and extra clients.

Table 1: The performance of the SMI

Array
Size of
doubles

Write
(µsec)
+- 25%

Read
(µsec)
+- 15%

Throughput
(Mbits/sec)

 +- 5%

4096 23 90 84

1024 15 19 65

128 14 12 27

1 11 8 .4

The reliability of the Shared Memory Interface, the
IOC, and LabVIEW has been very good. There have been
no problems with the installed IOC-based systems run-
ning for up to 4 weeks. A longer term study has not been
possible as of yet because of power outages or program

code modifications. The currently installed systems are
listed in Table 2. We expect to have installed around 300
systems based on the IOC, Shared memory, and Lab-
VIEW at the completion of the SNS project.

Table 2: Installed Diagnostic LabVIEW systems

Installed Systems MEBT DTL Test Comments

Beam position 6 2 IOC/ActiveX

Wire scanner 5 2 ActiveX

Faraday cup 1 0 IOC

Beamstop 1 0 IOC

Aperture 1 0 IOC

Haloscraper with
Beamstop

0 1 IOC

Faraday Cup with
Energy Degrader

0 1 IOC

Fast Beam Current
Monitor

0 1 IOC

LEBT Beam Current
Monitor

1 0 IOC

Fast Beam Loss Monitor 0 1 IOC

Physics Test 1 IOC to test
applications

Total 15 8 1 24

CONCLUSIONS
The Shared Memory Interface provides a connection

between the LabVIEW application and the EPICS based
control system. The LabVIEW programmer has a soft-
ware suite available to him or her to assist in writing Lab-
VIEW/EPICS applications and is thus not required to
have intimate knowledge about the EPICS IOC to get a
system up and running. The Shared Memory Interface is
more than fast enough for the planned SNS applications.

Using the Shared Memory Interface, any PC applica-
tion can be made available to channel access with the full
benefits of EPICS record support.

REFERENCES
[1] W. Blokland T. Shea M. Stettler, “Network Attached

Devices,” pp 151-153, DIPAC2003, Mainz, Germany,
May 5-7, 2003.

[2] http://www.apa.anl.gov/epics
[3] K.U. Kasimir. M. Pieck, L.R. Dalesio, “Integrating

LabVIEW into a Distributed Computing Environ-
ment,” pp 548-550, ICALEPCS’01, San Jose, CA,
USA, Nov 27-30, 2001.

[4] A. Liyu, “EPICS C and LabVIEW Clients,” Manual,
SNS, Oak Ridge, TN, USA, 2003.

Proceedings of ICALEPCS2003, Gyeongju, Korea

277

	A SHARED MEMORY INTERFACE BETWEEN LABVIEW AND EPICS*
	INTRODUCTION
	THE SHARED MEMORY INTERFACE
	INTEGRATING THE SHARED MEMORY WITH EPICS IOC
	Initialization
	Operation

	INTEGRATING THE SHARED MEMORY WITH LABVIEW
	PERFORMANCE
	
	
	
	
	MEBT
	DTL
	Test

	CONCLUSIONS

