
EPICS: RECENT DEVELOPMENTS AND FUTURE PERSPECTIVES*

R. Lange†, BESSY, 12489 Berlin, Germany
J. B. Anderson, A. N. Johnson M. R. Kraimer, W. E. Norum, ANL, Argonne, IL 60439, USA

L. R. Dalesio, J. O. Hill, LANL, Los Alamos, NM 87545, USA

Abstract
EPICS (Experimental Physics and Industrial Control

System) has become a widely used control system tool-
box in the accelerator and astronomy communities. New
projects are continuously pushing the collaboration to
incorporate new technologies, extend limitations and im-
prove the system design. This paper describes recent key
developments and presents development steps planned for
the near future.

1 INTRODUCTION

1.1 The EPICS Collaboration
The group of institutes and companies that form the

EPICS collaboration [1] has been growing constantly dur-
ing the last years: today it consists of more than
140 collaborators from 19 countries. About ten of these
institutes, the main users, are also contributing most of the
development work.

Table 1: EPICS Licensees by Region

North America 86 China 6

Europe 29 Asia (other) 3

Korea 8 Australia 2

Japan 7 South America 1

The ever growing still always outdated list of projects
that use EPICS for their control systems shows that about
half of the projects are accelerators, while the other half is
spread almost evenly between detectors, telescopes and
commercial projects.

1.2 Growing Demands
A user community of that size places a high

responsibility onto the developers: code changes have to
be introduced very carefully and tested thoroughly on all
available platforms, design improvements have to be dis-
cussed and coordinated with extraordinary diligence. All
necessary measures have to be taken to avoid develop-
ments that introduce incompatibilities or side and after
effects which would get multiplied by the number of us-
ers. On the other hand the growing community also in-

creases the pressure to utilise new technologies and pro-
gramming languages. In order to match the demands of
new collaborators and projects more and newer hardware
platforms have to be supported, existing limitations have
to be extended or removed, and new reliable releases have
to be shipped frequently.

2 PORTABILITY
Originally EPICS was designed to run on VME front-

end systems using VxWorks as the underlying real time
target operating system for the input output controller
(IOC). Thus VxWorks and VME specific calls were scat-
tered over the code, and the target system was extensively
using VxWorks specific features.

An increasing number of projects, especially those
hosted by universities as well as small installations, found
acquiring the necessary VxWorks development and run-
time licenses being well outside the tight limits of their
budget. Support for additional host and target systems,
namely from the public domain, became highly desirable.

2.1 The OSI Layer
An Operating System Independent layer was introduced

into iocCore (the EPICS target system), completely en-
capsulating operating system dependent functions and
resources, such as semaphores, threads, sockets, timers,
and a symbol table containing function and variable
names. [2,3] All hardware-specific support was unbun-
dled (see also Section 3.1 below) and is now being built
as separate modules. The EPICS build system was re-
structured to decouple operating system, architecture, and
compiler specifics: the IOC components are now built
targeting any supported OS, architecture and compiler
permutation. So today the target iocCore runs on recent
versions of VxWorks, RTEMS, Solaris, Linux, HPUX,
Darwin and Windows.

A number of projects have chosen to use RTEMS [4] as
the target real time operating system for their EPICS
IOCs. [5] It has been shown that RTEMS provides a real
time behaviour that is comparable to VxWorks [6], which
makes it an interesting and promising low-cost alternative
to VxWorks.

2.2 Host-based IOCs
As a side effect of the OSI layer introduction the EPICS

iocCore now runs on typical workstation or desktop sys-
tems, its multiple threads usually being executed within a
single system process. For these host-based IOC systems
the functionality of the VxWorks target shell has been
integrated into the iocShell, which was developed into a
full-fledged replacement that even exceeds the abilities of
its predecessor in some aspects. [7]

*Work supported by US Department of Energy under Contract Nos. W-
7405-ENG-36 (LANL) and W-31-109-ENG-38 (ANL), the German
Bundesministerium für Bildung und Forschung and the Land Berlin
(BESSY).
†Ralph.Lange@bessy.de

Proceedings of ICALEPCS2003, Gyeongju, Korea

278

Depending on certain TCP/IP implementation details,
many of the supported operating systems even allow run-
ning multiple iocCore processes on a single machine us-
ing the same IP address and UDP port number. This has
proven to be very useful in situations where databases that
are not directly hardware-related can be started and
stopped on demand.

In other applications commercial libraries and systems
that are limited to a certain OS (typically Windows) can
now be interfaced to in a very efficient, straightforward
way. This has been shown for the connection to OPC
Servers [8] and LabVIEWS systems [9].

For systems that do not need hard real time capability,
support for a number of PCI based interface cards has
been developed allowing inexpensive PC hardware run-
ning Linux to be used as IOCs.

3 CODE MANAGEMENT
An ever increasing number of source code lines and

modules was making it very hard to apply changes and do
the necessary tests. Preparing and shipping new releases
became such a time-consuming procedure that steps had
to be taken to ensure that the release process did not block
developments.

Tracking known problems and the steps to their solu-
tion was another field that required some managing effort,
as developers’ mental notes did not always offer the nec-
essary transparency to the release process.

3.1 Code Unbundling
During the porting process described above, all non-

essential and hardware specific support modules were
removed from EPICS Base and modified for installation
as independent modules. Responsibility for these modules
was shifted from the core development group to other
developers within the collaboration.

This effort had two major effects:
1. Hardware dependent code was moved out of Base,

which was thereby reduced to the core database and
communication engine.

2. EPICS Base can be developed, tested, and released
independently without the need for immediate testing
of all support modules.

3.2 Release Procedure
Formal schemes, procedures, and checklists for releas-

ing a new version are currently being worked on. This
development is aimed at making test and shipment of new
EPICS Base releases a more manageable task.

3.3 Error Tracking
A web-based bug reporting and tracking database has

been set up at the central EPICS documentation web
site. [10] The core developers have started using it suc-
cessfully on a regular basis, while users from the collabo-
ration still prefer the classical way of writing mail to the
Tech-Talk mail exploder, followed by core developers
creating entries in the database as necessary.

4 LICENSING
While EPICS was available only to non-profit organisa-

tions under a collaboration agreement or under a paid
license for the longest part of its history, the licensing
policy has been changed recently. Current versions of
EPICS Base and related components are available under
licenses that are similar to open source definitions.

While these changes had little effect on the existing
network of collaborating institutes, it opened completely
new ways to create complete subsystem solutions and
new tools for the EPICS toolbox.

4.1 Vendor-Supplied EPICS Subsystems
The Swiss Light Source has successfully acquired com-

plete system parts from external vendors – including the
EPICS controls for the supplied subsystems. To ensure
seamless integration into the SLS control system, the
vendor company received an extended EPICS software
package tailored by the SLS that included parts of the
framework in which their product was intended to run. In
addition to that, vendor specialists were given EPICS
training by the SLS. [11]

4.2 Development by Commercial Partners
A number of large projects of the EPICS collaboration

combined their efforts and funding to create a unique
partnership with a commercial software company, Cosy-
lab [12] from Slovenia. Cosylab developed and improved
the standard visual database configuration tool for EPICS,
VisualDCT. [13] After some initial administrative resis-
tance was overcome concerning providing public money
to a private company for creation of open source soft-
ware, the endeavour has proceeded efficiently and the
results were very convincing. New groups of sponsor in-
stitutes formed and specified additional packages contain-
ing improvements and extensions of VisualDCT that were
handed out to Cosylab.

During this process, it became obvious that large pro-
jects with commensurate funding strength are in the posi-
tion to get their demands into prominent parts of the
specification, while the larger part of the collaboration
played a more passive role with less control but neverthe-
less benefiting of the improvements and newly added
features.

5 MAJOR TOOLS FROM THE TOOLBOX
The EPICS toolkit contains a large number of different

tools, applications, and interfaces. From this huge collec-
tion a set of generic, easily adaptable core tools emerged,
covering the fundamental functionalities of a control sys-
tem. Some of these tools are traditional, highly stable ap-
plications with a long development history, others are new
developments that promise to be future standards. Any
new installation of EPICS will use the majority, if not all
of these applications, which will cover most demands of
the development and commissioning phases:

The edm (Extensible Display Manager) displays and
manages operator screens (panels).

Proceedings of ICALEPCS2003, Gyeongju, Korea

279

VisualDCT [13] is the standard graphical tool to create
EPICS databases.

The Channel Archiver [14] is the most-widely used
tool for long-term archiving of data that is available
through Channel Access, the EPICS data communication
protocol.

The alh (Alarm Handler) displays, logs, and manages
the alarm status of a hierarchy of channels.

The sequencer runs finite state machines on the IOC
that connect to the database through Channel Access.

StripTool is a generic application to create multi-
channel on-line x/t charts with browsing and zooming
capabilities.

Also the development of these mainstream EPICS tools
is influenced most by the large projects that typically fund
them, while the rest of the collaboration shares equally in
the benefits.

In addition to these main tools, the toolkit contains a
wide variety of modules: special solutions for site-specific
problems, new developments with a more experimental
character, and complete highly featured subsystems that
cover a complete functionality range. EPICS users can
freely select, build, test, and evaluate any of these tools
and then decide to keep, drop, watch, or improve it by
adding the missing features. The EPICS tools follow
strictly the Bazaar development model. [15]

6 CURRENT DEVELOPMENTS

6.1 WAN Capabilities of EPICS
The larger EPICS installations are running their control

systems in a wide area network (WAN) environment with
several IP subnets interconnected by routers. Channel
Access (CA) was originally developed for systems run-
ning in a single IP subnet. Its name resolution is accom-
plished using IP broadcasts, and therefore large sites must
be aware of scalability and configurability issues.

Today, the CA Gateway component [16] can be used to
break large systems into manageable subsystems and the
CA Nameserver component [17] can be used to reduce
broadcast traffic. However, there are remaining WAN
issues such as server state-of-health beacons, resource
location monitoring, and wild card queries which need to
be considered in the context of global name resolution
services. [18,19]

6.2 Channel Access Protocol
The first steps have been made to prepare the design of

the future Channel Access protocol. [18,20] This design
relates to the newly designed object oriented data abstrac-
tion interface Data Access [20,21] which will be used in a
future Channel Access API. Ultimately Channel Access
will transport any user data across the network that can be
introspected with the Data Access interface.

6.3 Native Java Channel Access Client
A number of collaboration members have asked for a

native Java implementation of the Channel Access client
library. As a first step in that direction efforts have been

started to create a full official documentation of the
Channel Access protocol.

6.4 Re-engineering of Core Libraries
An effort has recently started to re-engineer some cen-

tral libraries of iocCore to provide a native C++ inter-
face. [22] This will provide a strong foundation for future
changes.

6.5 OS Independent Device Support
Introducing the OSI layer into Base created the neces-

sary environment to provide operating system independ-
ent device and driver support for existing and future I/O
equipment.

While the first support modules are being re-engineered
and changed to be OS independent, it is getting more and
more obvious that this process is not simple and may need
some additional support from Base libraries.

6.6 Development Framework
The host-based tools that are used to create IOC data-

bases and configurations for the different EPICS tools
(see Section 5) are separate applications with few inter-
connections and interoperability. There is no integrating
framework that allows for quick and easy creation of a
database and the matching panels and tool configurations.
At the recent Spring 2003 Collaboration Meeting at Dia-
mond a first prototype of a possible framework applica-
tion was presented [23], allowing the creation of a small
EPICS application with the look-and-feel of an Integrated
Development Environment.

7 TRENDS
A small email survey covering the ten largest EPICS

installations shows current trends for hardware and oper-
ating system choices:

On the front-end level, most large institutes are using
VxWorks on VME bus systems. New systems are entirely
built with PowerPC based controllers, existing 68k based
controller boards are gradually being replaced. Only few
institutes are using RTEMS, while some more are evaluat-
ing it and wait to see how strong it will be supported by
the community. Linux on Industrial PC and PC-104
hardware is being used and evaluated for slow and low
channel density applications.

On the operator console level, there is a strong move-
ment away from the traditional Sparc/Solaris and PA-
RISC/HP-UX workstations towards using Linux on PC
hardware, as well for graphical workstations as for file,
computing and database servers. Especially HP’s future as
a control system development platform seems limited.

8 LONG-TERM PERSPECTIVES
A task force group has been formed that organises a set

of meetings called EPICS-2010 to explore actual and pos-
sible demands of control system users and collect ideas
for future control systems in general and for EPICS spe-
cifically. The aim is to create a visionary sketch of the

Proceedings of ICALEPCS2003, Gyeongju, Korea

280

control system design and features that are desirable in a
time range of about seven years. At this conference a
status report on these meetings will be presented. [24]

9 CONCLUSION
After more than ten years the development of the

EPICS toolbox had come to a point where the demands of
a large user community and the mere size of the source
code made it necessary to introduce some profound
changes into the system design and code management.

A number of important steps have been made to modu-
larise the system and improve the manageability, new
ways have been created to utilise professional resources,
and a process to analyse future demands for a modern
control system has been established.

REFERENCES
[1] http://www.aps.anl.gov/epics/
[2] M.R. Kraimer, “EPICS: Porting iocCore to Multiple

Operating Systems”, ICALEPCS’99, Trieste, October
1999.

[3] M.R. Kraimer, J.B. Anderson, J.O. Hill,
W.E. Norum, “EPICS: A Retrospective on Porting
iocCore to Multiple Operating Systems”,
ICALEPCS’01, San Jose, November 2001.

[4] http://www.rtems.com/
[5] W.E. Norum, “EPICS on the RTEMS Real-Time

Executive”, presented at the Synchrotron Radiation
Instrumentation 2001 Conference, Madison, Wiscon-
sin, August 2001; published in the American Institute
of Physics Review of Scientific Instrumentation,
January, 2002.

[6] T. Straumann, “Open Source Real Time Operating
Systems Overview”, ICALEPCS’01, San Jose, No-
vember 2001.

[7] W.E. Norum, “New Capabilities of the EPICS IOC
Shell”, ICALEPCS’03, Gyeongju, October 2003.

[8] R. Fleischhauer, B. Kuner, G. Meyer, J. Rahn,
C. Winkler, “Integrating PLCs with an OPC Interface
into an EPICS-based Control System”,
ICALEPCS’03, Gyeongju, October 2003.

[9] D.H. Thompson, W. Blokland, “A Shared Memory
Interface between LabVIEW and EPICS”,
ICALEPCS’03, Gyeongju, October 2003.

[10] http://www.aps.anl.gov/epics/mantis/

[11] S. Hunt, “Purchasing Accelerator Subsystems as
Turnkey Components”, ICALEPCS’01, San Jose,
November 2001.

[12] http://www.cosylab.com/
[13] M. Sekoranja, S. Hunt, A. Luedeke, “VisualDCT –

Visual EPICS Database Configuration Tool”,
ICALEPCS’01, San Jose, November 2001.

[14] K.U. Kasemir, L.R. Dalesio, “Overview of the Ex-
perimental Physics and Industrial Control System
(EPICS) Channel Archiver”, ICALEPCS’01, San
Jose, November 2001.

[15] Eric S. Raymond, “The Cathedral and the Bazaar”,
first presented at the Linux Congress, 1997; pub-
lished by O’Reilly, October 1999.
http://www.catb.org/~esr/writings/cathedral-bazaar/

[16] R. Lange, “CA Gateway Update”, presented at the
EPICS Collaboration Meeting at JLab, Newport
News, Virginia, November 2002.

[17] J. Sage, M.H. Bickley, K.S. White, “Using a Name-
server to Enhance Control System Efficiency”,
ICALEPCS’01, San Jose, November 2001.

[18] J.O. Hill, “Next Generation EPICS Communication
Protocols”, ICALEPCS’99, Trieste, October 1999.

[19] J.O. Hill, K. Furukawa, S. Hunt, A. Johnson,
R. Lange, J. Sage, E. Williams, “EPICS and WANs:
Tradeoffs between Isolation, Security, Robustness,
and Transparency”. ICALEPCS’03, Gyeongju, Octo-
ber 2003.

[20] J.O. Hill, R. Lange, “Next Generation EPICS Inter-
face to Abstract Data”, ICALEPCS’01, San Jose,
November 2001.

[21] R. Lange, J.O. Hill, “Data Access – Experiences Im-
plementing an Object Oriented Library on Various
Platforms”, ICALEPCS’01, San Jose, November
2001.

[22] A.N. Johnson, M.R. Kraimer, “Reimplementing the
EPICS Static Database Access Library”,
ICALEPCS’01, San Jose, November 2001.

[23] S. Hunt, “Why aren’t we all using Labview?”, pre-
sented at the EPICS Collaboration meeting at Dia-
mond, Abingdon, June 2003.

[24] M. Clausen, N. Yamamoto, M. Kraimer, H. Shoaee,
L. Dalesio, “EPICS-2010 – A Visionary Look at the
Evolution of a Collaborative Control Toolkit”,
ICALEPCS’03, Gyeongju, October 2003.

Proceedings of ICALEPCS2003, Gyeongju, Korea

281

	EPICS: RECENT DEVELOPMENTS AND FUTURE PERSPECTIVES*
	1 INTRODUCTION
	1.1 The EPICS Collaboration
	1.2 Growing Demands

	2 PORTABILITY
	2.1 The OSI Layer
	2.2 Host-based IOCs

	3 CODE MANAGEMENT
	3.1 Code Unbundling
	3.2 Release Procedure
	3.3 Error Tracking

	4 LICENSING
	4.1 Vendor-Supplied EPICS Subsystems
	4.2 Development by Commercial Partners

	5 MAJOR TOOLS FROM THE TOOLBOX
	6 CURRENT DEVELOPMENTS
	6.1 WAN Capabilities of EPICS
	6.2 Channel Access Protocol
	6.3 Native Java Channel Access Client
	6.4 Re-engineering of Core Libraries
	6.5 OS Independent Device Support
	6.6 Development Framework

	7 TRENDS
	8 LONG-TERM PERSPECTIVES
	9 CONCLUSION
	REFERENCES

