
THE CONTROLS MIDDLEWARE (CMW) AT CERN
STATUS AND USAGE

K. Kostro, J. Andersson, F. Di Maio, S. Jensen, CERN, Geneva
N. Trofimov, IHEP, Protvino, Moscow Region

Abstract
A new Controls Middleware (CMW) for the "LHC era"

has been recently designed and implemented to serve the
CERN accelerator sector. It has now been used for almost
two years in the operation of the PS accelerator complex
and is being introduced for the control of all the
upcoming LHC equipment as well as for the existing SPS
equipment.

This paper presents the architecture and capabilities of
the system and shows how it has been integrated in the
existing controls environment. The use of
publish/subscribe paradigm, the performance of the
system, and administration facilities are described as well.
Based on the experience with CMW we also discuss the
validity of choices, which were made almost four years
ago.

INTRODUCTION
As part of the preparation to control the LHC it has

been requested that a new middleware is put in place to
replace the existing communication systems, notably the
remote procedure call system developed around 1988 and
successfully used for many years, augmented with
equipment access standards.

More specifically this new middleware shall support
OO development, particularly in Java; it shall offer
publish-subscribe facilities in addition to synchronous
equipment access and a better connectivity to industrial
systems.

Originally two separate technologies were selected to
serve as the base for the controls middleware: CORBA
and JMS. The choice of CORBA was to support multi-
language and multi-platform inter-operability. The choice
of JMS was motivated by the availability of commercial
products and strong involvement in Java. JMS is today
mainly used internally within the J2EE platform and we
will not discuss it here.

ARCHITECTURE AND COMPONENTS
CMW is structured as a client/server model. At the

heart of CMW is the Remote Device Access (RDA)
system [1], which defines the client and the server API
and provides the communication on top of CORBA.

The Java control programs constitute the main category
of CMW clients. A C++ client API is provided as well and
used mainly to build gateways. A VB/Excel API is also
available for rapid prototyping.

At the server level a significant effort was made to
connect existing controls equipment. This required
multiple server developments due to heterogeneous
equipment access methods, which had to be covered.

Naming and Configuration services were developed
within the CMW to support the device name resolution
and to allow server configuration from existing databases.
Finally, administration and diagnostics utilities were
developed to be able to survey the status of servers and to
rapidly diagnose any faults.

Figure 1 gives an overview of CMW components.

User written

Middleware

Existing or off-shelf

RDA Server API, CMW Server Framework (C++, Java)

Physical Devices (RF, BT, BI, Powering)

Java Control
Programs

RDA Client API
Device/Property Model

Naming
Service

Oracle DB

Config
Service

Oracle DB

VB, Excel

Servers
C

lients

Virtual Devices
(Java, C++)

SL-Equip
Server

PS-GM
Server

OPC
Gateway

Biscoto
Server

CMW Infrastructure

RDA, CORBA

C++ Programs

More
Servers

Administration
console

C++ library

Tracing

Figure 1: CMW Architecture and Components

The device model and the RDA
The Device Model has been traditionally used in the PS

and SPS control systems. Within this model the control
system consists of named devices. The devices can
represent actual physical device such as Position Monitor
or can represent virtual entities such as Beam Line. Each
device belongs to a Device Class and it is the Device
Class that defines the properties, which can be used to
access the device. By invoking a get() on the device with
the property name, the value of this property will be read.
The following sequence of Java code illustrates this:

DeviceHandle bpmDevice =
 rda.getDeviceHandle("BPM1”);

Data result = bpmDevice.get("Position");

Similarly by calling a set() method on the device, the
value of the property (for instance the gain) can be set.

In addition to the get and set operations, CMW allows a
property to be monitored. When a user invokes
monitorOn() on a device, the updates to the value of the
property specified in the call, but also any exceptional
events will be delivered to the listener:

BpmHandler listener = new BpmHandler();
BpmDevice.monitorOn(“Position”, listener);

Proceedings of ICALEPCS2003, Gyeongju, Korea

318

Similarly by calling a set() method on the device, the
value of the property (for instance the gain) can be set.

In addition to the get and set operations, CMW allows a
property to be monitored. When a user invokes
monitorOn() on a device, the updates to the value of the
property specified in the call, but also any exceptional
events will be delivered to the listener:

BpmHandler listener = new BpmHandler();
BpmDevice.monitorOn(“Position”, listener);

The BpmHandler class implements the ReplyHandler
interface i.e. it provides the actual implementation of the
method, which will handle updates to the value of the
Position property. Methods that handle device I/O errors
and any exceptional events such as disconnections are
also part of this interface.

The Device Access Model has been implemented as the
Remote Device Access (RDA) system. RDA provides
both synchronous and asynchronous versions of the get()
and set() methods. On the server side the developer has
the possibility of implementing only the synchronous
versions with RDA providing default synchronization.
Although the device model does not explicitly provide the
possibility for a set-and-get operation, the get call can
carry a filter by which get condition can be specified. We
are trying to standardize and limit utilization of filters to
preserve the generic aspect of the device access model.

 RDA is implemented on top of CORBA with two-way
calls being used for synchronous and one-way calls for
asynchronous get/set operations and for monitoring. RDA
provides an elaborated mechanism for detection of
connection failures and automatic reconnection. The
description of RDA, the rationales behind it and the
details of the implementation are described in [1].

All calls can take cycle selector as a parameter. The
cycle selector restricts the applicability of the operation to
a specific cycle of cycle type. This reflects ability
required in the accelerator control systems to work with a
specific cycle (e.g. first proton cycle) or with a specific
“virtual machine” of the PS accelerator complex. Thus the
cycle selector constitutes a sort of filter, especially useful
to specify subscription conditions. CMW does not assume
anything about the nature of cycle selectors. In the
monitoring a polling period can be specified instead of a
cycle selector.

Narrow API and self-describing data
A deliberate choice was made in CMW to use a narrow

API for the device access. As it has been shown in the
example the property name is specified in the get()
method. The alternative would be to offer a wide API i.e.
provide getPosition() method to get the value of the
Position property. There were several reasons for this
choice. First of all the previous experience with the
Remote Procedure Calls (RPC) has shown that the
diversity of methods to access equipment creates more
problems than benefits. Later on a generic device access
was created on top of the RPC. Secondly the wide

interface would imply a huge initial effort required to
generate the code required to access the existing devices.
And last but not least it is much easier to develop generic
applications and gateways based on a narrow API.

To nevertheless enforce the maximum of consistency
checking, the types of properties are checked at runtime.
For instance setting the gain as an integer will generate a
runtime error if the expected value was a double.

A similar decision was made for property values. The
value of the property is encoded as a Data object. The
Data object is defined by CMW and allows transport of
self-defining data in a language-independent way. The
Data object serves as a container for one or more
DataEntry objects. Each DataEntry can hold a scalar
value, a string or an array of these. The data object carries
the names of DataEntry tags with it. This generates a
small overhead but it is very useful for interpretation of
data in generic clients.

System administration and diagnostics
Good diagnostics and administration facilities are

essential in a distributed system. In the CMW the system
administration is part of the system requirements and a
considerable effort has been invested into administration
and diagnostics support in the servers as well as the
accompanying tools.

Administration facilities have been defined in CORBA
as a dedicated admin interface. All CMW servers
implement this interface (RDA servers and also directory
and database servers). The admin interface allows to
interrogate the status of the server, collect server
statistics, set tracing levels and even to restart the server.

Based on this interface, the CMW Management
Console has been developed. In the survey mode the
console displays the overall status of the server, decoded
as the colour of the corresponding button. When a server
is selected, detailed information about the server, its
configuration, client information and statistics is
available. Trace levels can be remotely changed to enable
server diagnostics. Figure 2 shows a screenshot of the
Management Console.

Figure 2: CMW Management Console

Proceedings of ICALEPCS2003, Gyeongju, Korea

319

Developing and deploying CMW servers When a problem is discovered in connection with a
device access, it is useful to be able rapidly to access the
same device to verify the existence of a fault and study
the behaviour. For this reason a Device Explorer has
been developed, which allows browsing the device name
space, discovering the available properties and exercising
the access to device both in get and in subscribe mode.

RDA provides basic features for the server construction
and a CMW server can actually be build using the RDA
library. However, a typical server implementation
requires additional features, mainly to support
subscription updates. For instance the device has to be
polled at a given time in the cycle, driven by timing
events. Polling the device more then once for the same
property/cycle combination must be avoided. The classes,
which implement these facilities, form the Device Server
Framework (SFWK).

To diagnose equipment access problems, the CMW
logging and tracing system can be used as well. All
servers are able to log the trace of what they are doing
with various level of detail. Log levels for areas of
concern (get/set calls, subscription) can be enabled from
the Administration Console and results can be consulted
in the log file. Errors are normally logged all the time.

Typically equipment control software runs on a real-
time platform (LynxOS) as a high priority process (real-
time task). The CMW server communicates with real-
time tasks via an internal mechanism – shared memory or
message queue. To develop a CMW server an adapter has
to be developed, which is specific for a class of
equipment (for instance Beam Instrumentation equipment
access). Once the adapter is available, equipment-specific
servers can be generated more or less automatically.
Typical server components are shown in Figure 3.

DEPLOYMENT AND USE OF CMW
One of the prerequisites for replacing existing

communication methods was the possibility to access all
the existing equipment via the CMW. This has been
accomplished and today virtually all accelerator
equipment can be accessed this way. Currently the CMW
is used mainly from Java. All new developments at the
application level are today in Java and the device access
is made through the Java RDA API.

CORBA

LynxOS PowerPC

CMW BCT Server

BCT
Real-Time Task

CMW Adapter specific
for Beam Instrumentation

RDA,
Server Framework

BCT-specific
library SHM, MQ

This process has started with the control of the
Antiproton Decelerator (AD) in March 2002. Recently the
commissioning of the beam extraction from SPS to the
LHC was performed almost exclusively with Java
applications and equipment access through the CMW.

Use of the subscription facilities
Use of the publish/subscribe paradigm is new in the

CERN controls environment and users as well as
providers of this facility had to learn how to use it
effectively. First of all the existing equipment access
methods and equipment servers were not made to support
subscription so that the CMW servers have to poll
equipment first, to be able to push updates to the
subscribers. RDA offers the possibility of subscribing “on
change” i.e. updates are delivered only if the property
value has changed. This facility is not available in
existing device access libraries and has to be implemented
in CMW servers. The first implementations of the
monitoring were not delivering the initial property value,
a facility, which is essential for effective use of
subscription on-change.

Figure 3: Beam Curent Transformer (BCT) Server

In the past a number of different CMW servers were
developed to cover access to existing equipment.
Recently an effort has started to design and develop the
universal equipment server framework for the accelerator
controls equipment servers [2]. We are participating in
this effort to define the optimal architecture for
communication via CMW, notably for subscriptions.

Table 1 shows the platforms on which CMW servers
are or will be deployed.

Today the update on-change and initial value delivery
are systematically supported in all CMW servers. All
properties are systematically delivered with the timestamp
(UTC time in nanoseconds) and/or the unique cycle
identification. This cycle identification makes it possible
to correlate different updates as belonging to the same
cycle.

Table 1: Deployment of CMW servers

In the future a better support for the subscription will be
built into the equipment control software so that it will be
the real-time task, which will notify the CMW when a
property has changed in a significant way.

Platform OS compiler
PowerPC, VME LynxOS 3.1/4.0 gcc 2.92
Intel, PCI LynxOS 4.0 gcc 2.95
Intel, PCI Linux gcc 2.96
Intel, PCI Windows 2000/XP MSVC++ 6.0
Java JDK 1.3/1.4 JDK 1.3/1.4

Proceedings of ICALEPCS2003, Gyeongju, Korea

320

Naming and configuration services
In the device/property model the control system is

perceived as an ensemble of named devices, which can be
controlled via properties. Device names are unique within
CERN. To find resources allocated to devices, a device
directory is required.

CMW servers can often be developed as generic servers
configured with equipment information already available
from the database, which greatly simplifies maintenance
and deployment.

In CMW both naming and configuration services were
developed as CORBA servers in Java, connected to a
database via JDBC. These servers are running directly on
the database computer or on a dedicated Java server. They
also implement the administration interface mentioned
before and can be surveyed as any other CMW server.

CMW clients
Most of the CMW client access is from Java, either

directly from Java GUI applications or from the middle
tier, the accelerator business logic being developed in
Java. But Java cannot be easily integrated with other, non-
Java systems so that the availability of a C++ client
interface is also essential. The C++ client API was used to
develop a Visual Basic and Excel interface to the control
system (the so-called passerelle). This facility is very
much appreciated by the operators and used for rapid
prototyping and machine development.

CMW performance
Given the modern and complex technology, which we

are using in CMW (CORBA, Java, multithreading, etc),
we had some doubts about the final performance of the
equipment access. It turned out that the performance is
absolutely adequate, often better than the previous
equipment access methods. In table 2 we give some
performance figures for a synchronous get() call returning
a single scalar value. The first row shows the actual
access time, including the network overhead, which we
experience on operational servers and which include the
reading of the equipment property. The two other
measurement results were obtained with a test server and
give a reasonable estimate of what can be expected in the
LHC era in terms of communication overhead.

Table 2: RDA performance of a simple get() call
Client Server Synch. get()

800 Mhz Intel,
Java

LynxOS, 175 Mhz PPC,
PS Equipment Server

4.5 ms

2400 Mhz Intel,
Java

LynxOS, 400 Mhz PPC,
RDA test server

0.5 ms

2400 Mhz Intel,
Windows, C++

Linux, 2400 Mhz Intel,
RDA test server

0.16 ms

CONCLUSIONS
In summary the experience with developing and using

CMW is very positive. The use of Object-Oriented
programming allowed us to have a very stable product
from the very beginning. The execution performance is

more than adequate. We were able to offer the
publish/subscribe mechanism, which is being increasingly
used. The CMW has been deployed rapidly and integrated
with the existing controls infrastructure.

The implementation and use of the publish/subscribe
paradigm required some adjustment, notably grouping of
updates was introduced to satisfy the performance
requirements.

The main difficulties, which we encountered in
development and maintenance of CMW, are related to the
use of C++. The CORBA implementation, the RDA and
the CMW servers require a recent, good quality C++
compiler. Especially on our base Front-End operating
system – the real-time LynxOS system, the deployment of
RDA was only possible on one of the recent releases of
the system. C++ executables, which use complex
libraries, tend to have a large footprint. This is not a
problem on modern PCs but it is limiting the deployment
possibilities on VME systems introduced in the 90-ties.
Since shared libraries are still not available on our
LynxOS systems, the deployment of CMW servers is
often limited to one per CPU.

Apart from the memory problem, the experience with
CORBA was very positive. Thanks to CORBA we could
use an OO approach across the communication layer.
When additional services, such as database access, are
required we can develop them as CORBA servers, which
greatly simplifies the development task.

FUTURE WORK
Although the CMW infrastructure itself is ready,

additional developments are necessary to support the
upcoming LHC infrastructure and to continue the
deployment on the new LHC platforms.

To complete the connectivity we have to provide a
bridge between CMW and PVSS – the major SCADA
system used at CERN. The new Front-End equipment
framework [2] will require the development of a new
CMW server. Some consolidation work is still necessary,
notably in the area of Naming Services where we would
like to establish a common device directory for all
controls equipment and in the area of access control,
which requires the establishment of access rights.

The use of CMW can be improved by introducing
standards for server behaviour. For instance a standard for
data reduction filters would allow to specify which sub-
range of array has to be transmitted, without the need for
defining a specific property for this.

REFERENCES
[1] N. Trofimov, V. Baggiolini, S. Jensen, K. Kostro, F.

Di Maio, A. Risso, “Remote Device Access in the
New Accelerator Controls”, ICALEPCS ’01, San
Jose, USA, 27-30 Nov. 2001.

[2] M. Arruat, A. Guerrero, J-J. Gras, S. Jackson, M.
Ludwig, J-L. Nougaret (CERN), “CERN Front End
Software Architecture for Accelerator Controls”, This
conference.

Proceedings of ICALEPCS2003, Gyeongju, Korea

321

	THE CONTROLS MIDDLEWARE (CMW) AT CERN�STATUS AND USAGE
	INTRODUCTION
	ARCHITECTURE AND COMPONENTS
	The device model and the RDA
	Narrow API and self-describing data
	System administration and diagnostics

	DEPLOYMENT AND USE OF CMW
	Use of the subscription facilities
	Developing and deploying CMW servers
	Naming and configuration services
	CMW clients
	CMW performance

	CONCLUSIONS
	FUTURE WORK
	REFERENCES

