
MIDDLEWARE IN ACCELERATOR AND TELESCOPE CONTROL
SYSTEM

A.Götz, ESRF, 6 rue Jules Horowitz, Grenoble 38043, FRANCE
D.Schmidt, 616E Engineering Tower, University of California, Irvine, CA 92697-2625, USA

M.Clausen, DESY, Notkestrasse 85, Hamburg 22607, GERMANY

Abstract

Middleware is an integral part of all modern control sys-
tems [1]. In the past the term middleware was used to refer
to the first abstraction layer between the lower-level hard-
ware access layer and the higher level application layer.
It was often introduced to hide the network communica-
tion protocols. Middleware has developed far beyond this.
Modern control systems can now have multiple middleware
layers which take care of the network but also increasingly
the modelling aspects of the control sytem. New middle-
ware component models provide the technology for mod-
elling the control system from the highest level down to the
hardware access level.

This paper will make a review of the current middleware
situation in accelerator and telescope control systems. The
main component models for CORBA, Java and .NET will
be discussed. The paper will cover common network pro-
tocols like IIOP, RMI and SOAP and their use in control
systems.

INTRODUCTION

Accelerator control systems like most other software
systems follow a layered approach. Each layer takes care of
a specific aspect of the control system. Telecsopes and ac-
celerators are often physically big machines (anything from
10 m to 1 km to 30 km’s). Accelerators and telescopes were
therefore amongst the first to exploit the advantages of the
network to build distributed control systems. The first dis-
tributed control systems used middleware only to hide the
details of the network programming. The distribution of
processes was however often poorly handled and control
systems were tightly coupled. Middleware has not ceased
to evolve and the latest generation of middleware allows
building of flexible, robust distributed control systems with
less effort than in the early days. The main problem today
is choosing which middleware to use amongst the plethora
of available ones.

After a brief look into what is middleware and where
we are coming from this paper will present a review of the
current common middleware solutions, examples of their
use and how to choose between them.

WHAT IS MIDDLEWARE ?

Middleware was invented to make using general services
like the network database, web, naming etc. easier to use.
Middleware is the layer between the operating system and
the applications. It handles the communication between the
distirbuted nodes. As distributed computing have become
ubiquitous so has middleware become essential. Problems
in the middleware layer can cause a breakdown of the entire
control system.

PIONEERING DAYS

Control systems for accelerators and telescopes have
been around for quite a while, longer than the network. In
the early days control system developers had to invent their
own networks, protocols and software. These were adapted
to their requirements and were quite impressive consider-
ing the fact that often everything had to be developed from
scratch. In the 1980’s the network came along with some
standard libraries for building network connections based
on sockets. The socket paradigm has served the controls
community for a long time. EPICS, the most widely used
control system in the accelerator community still uses sock-
ets to communicate with clients. As the network became
ubiquitous and computers have become more powerful the
software built around the network i.e. the middleware, has
become more sophisticated. Today the middleware layer is
being driven by different standards consortiums big compa-
nies and the IT business community. There are now multi-
ple standards and languages around and it is up to the con-
trols system builder to make the right choice. This paper
makes a review of the main choices available today.

REQUIREMENTS

A solution needs a problem to solve. It is not a good
idea when the solution becomes the problem. What are the
specific needs of control system concerning middleware ?
Middleware needs for control systems can be broken down
into general needs and specific needs.

General requirements

General needs are those needs which almost all middle-
ware systems require. These are :

Proceedings of ICALEPCS2003, Gyeongju, Korea

322

• distributed - the network is now a fundamental part
of any control system.

• naming - a distributed environment needs a way of
finding objects

• database - configuration information and data need to
be stored in an easily accessible manner

• navigation - it is useful to be able to browse through
a system without any a-priori knowledge

• security - users need to be protected from intrusions,
viruses and themselves

• messaging - the possibility to send data asyn-
chronously to one or many clients.

One middleware service which is widely used in business
but which is not required by control systems is transaction
processing.

Specific requirements

Specific needs are those needs which make control sys-
tems different from middleware for enterprises. These
needs are :

• limited resources - control systems have to run on
platforms where there are often limited resources
(memory, cpu, badnwidth).

• hardware access - the first requirement for all control
systems is to access the actuators and sensors.

• realtime performance - control systems need to con-
trol real hardware within very tight timing constraints.

• reliability - control systems run critical mission sys-
tems and downtime has to be kept to a minimum.

• process control - control systems control feedback
loops and other typical process control systems one
finds typically in a factory.

• process attributes - data coming from actuators and
sensors have a fixed set of attributes like warnings,
alarms, minimum and maximum values associated
with them.

Any middleware chosen for a control system needs to en-
able the above control system specific needs and not disre-
gard them.

CORBA WORLD

CORBA started off as an object-oriented language in-
dependant protocol in the early 1990s. It has since gone
through a number of incarnations :

• CORBA 1 (1991-1995) defined an interface definition
language (IDL) and a inter-operable TCP/IP based
protocol called IIOP.

Figure 1: CORBA Component Model diagram

• CORBA 2 (1996-2000) defined a standard for imple-
menting object creation strategies in servers (POA)
and added definitions for a large number of services
e.g. Naming, Notification, Realtime, etc.

• CORBA 3 (2001-) added the CORBA Component
Model (CCM).

The CORBA implementations (called Object Request Bro-
kers, ORBs) handle the marshalling of network calls be-
tween clients and servers. The IDL is defined without any
reference to CORBA and has been adopted as an ISO stan-
dard. IDL can be used to define non-CORBA systems.

The CORBA Realtime extension is very interesting for
controls systems because it allows an end-to-end pre-
dictability from client to server. This is done by sup-
porting thread and client request priorities at the network
(ORB) level. These then map to operating system specific
calls locally. Using these primitives priority inversion can
be avoided. CORBA Realtime is still relatively new and
therefore not widely used in control systems. This should
change in the future.

The CORBA Component Model is the most significant
addition to the CORBA 3 specification [2]. It is the OMG’s
response to inter-operability problems between different
CORBA systems and the Java world. The CCM is based
on version 1.0 of Enterprise Java Beans (EJB) component
model. There is an almost one to one correspondance be-
tween CCM and EJB 1.0. The CCM proposes the com-
ponent as a specialisation of the object. CORBA Objects
are ”dumb” objects in the sense that clients cannot know
what an object can do unless it has prior knowledge about
the object which can only be communicated by a non-
programming interface e.g. by reading a manual. Com-
ponents are objects which offer pre-defined interfaces and
which can receive or send events. Clients can discover what
components have to offer via built-in browsing capabili-
ties. Components are managed by containers. The CCM
Container model simplifies the way in which components
can be created and made available to the external world.
Whereas previously the CORBA Portable Object Adapter
(POA) offered lots of different possibilities the CCM Con-

Proceedings of ICALEPCS2003, Gyeongju, Korea

323

tainer model offerstwo main ones. The CCM offers stan-
dard solutions for :

• configuring attributes

• persistance of objects and their attributes

• sending and receiving events

• packaging binary components for distribution

The CORBA CCM offers a standard solution for what all
control systems builders using CORBA are already do-
ing. Very early on accelerator and telescope control sys-
tem builders recognised that choosing CORBA is simply
not enough for building a control system. It has to supple-
mented by a component model which implements the fea-
tures identified in the CCM. The advantage of the CORBA
CCM is that it is a standard and there is hope that by adopt-
ing the CCM different control systems can share compo-
nents for controlling hardware or doing high-level tasks.
There are not many CCM implementations available to-
day. CORBA is different to most other middleware solu-
tions because it is in many respects software by a commit-
tee. The Object Management Group (OMG) which man-
ages the CORBA standard produces only a specification
but no reference implementation. It is left up to the com-
munity to implement the specification. The approach of
software-by-committee does however lead to the specifica-
tion being ahead of the implementation. This means there
is a time lag before published standards are converted into
working implementations and get accepted by the controls
community. The recent Corba Component Model is a good
example. The standard is available since 2001 but partial
implementations are only emerging now. For more infor-
mation on CORBA and the CCM refer to the bibliography.

CORBA is turning out to be more and more widely used
in new telescope and accelerator control systems. The suc-
cess of CORBA in the controls community is in part due to
-

1. CORBA is language independant and object oriented
and therefore fits well in with the popular object ori-
ented languages around today e.g. Java, C++

2. CORBA has defined a standard for doing realtime net-
working,

3. CORBA is vendor independant.

Some good examples of control systems based on
CORBA in the accelerator and telescope controls world are
:

1. TANGO - new CORBA based control system being
built by the ESRF and Soleil (France) to control syn-
chrotrons and experiments

2. ACS - CORBA based control system being built by
ESO and Cosylab for the Atacama Telescope control
system (Chile)

3. NIF - CORBA based control system for the National
Ignition Facility being built by LLNL using Ada 95
and ORBExpress (USA)

4. CMW - CERN middleware project (Switzerland)

5. GTC - new 8m optical telescope control system in
Gran Canarias (Spain)

6. ILL - new neutron experiments control system at the
ILL (France)

The next logical step in the CORBA controls is to adopt the
common CCM model and see if we can share components.

JAVA WORLD

Java is a language designed to be interpreted on any plat-
form independant of the operating system running. It was
originally designed in 1991 for handheld devices as part
of SUN’s vision of the future of computing. It really took
off in 1995 when it was married with the internet and inte-
grated into netscape, the main internet browser at that time.
Java is very attractive for its platform independance, object
orientedness, clean interfaces, internet abilities and wide
range of classes. Java has become the main language for
programming enterprise logic in the recent years and has
replaced COBOL as the enterprise programming language
for the future. Java is probably the main internet service
programming language too. This has resulted in Java being
a if not the cornerstone of business middleware. Accel-
erator and telescope control systems need to have a Java
strategy in order to lever the good features of Java in their
favour. Where Java has so far had little inroads is in replac-
ing the operating system at the low-level, traditionally re-
ferred to as the frontend in control systems. The reason for
this is the lack of Java implementations for frontend plat-
forms which offer access to system features. Isolated ex-
amples exist of Java virtual machines (JVM’s) being ported
to hardware platforms and offering a complete frontend
programming environment e.g. Accelerated Technology’s
Nucleus RTOS, Lejos for LEGO Mindstorms robot. We
can expect this trend to increase in the future. We will re-
strict our discussion to Java as middleware at the higher
levels, RMI and Jini.

Java implements solutions for the following middleware
tasks :

• naming - Java Naming Directory (JNDI)

• messaging - Java Messaging Service (JMS)

• components - Enterprise Java Beans (EJB)

• database access - Java Database Connectivity (JDBC)

• web pages - Java Server Pages (JSP)

In contrast to CORBA there is always a reference imple-
mentation for the Java classes from SUN which is available

Proceedings of ICALEPCS2003, Gyeongju, Korea

324

free of charge. This makes Java based middleware accessi-
ble to everybody and not only the big-iron players.

Why is Java middleware of interest to control system
builders ? It solves many of the typical middleware prob-
lems faced by application builders, it is multi-platform,
many of the Java technologies support heterogeneous en-
vironments. For example JNDI supports CORBA naming,
Java 2 supports IIOP and CORBA IDL. This makes Java a
good integrating middleware. On top of this Java offers a
complete graphical library (Swing) for building graphical
applications. Java is well-suited as a middleware and lan-
guage to building the upper levels of control system. The
compatibility between the EJB and CORBA CCM com-
ponent model means both can be deployed together in a
transparent manner i.e. EJB components look like CCM
components and vice versa. Add to this the fact that Java
is often being used by the enterprise resource management
systems in many companies one can imagine an integrated
solution which spans the control systems and management
information systems. However up to now no control sys-
tems are using Java as middleware in this way. Most of the
use of Java is restricted to graphical users interfaces, the
web and as an asynchronous communication mechanism.

Java offers it own remote method invocation (RMI) for
distributing objects. RMI offers a naming service, firewall
tunneling and a security system. Although RMI is inter-
esting for pure Java based applications it is slower than
CORBA and not adapted to non-Java distributed objects.
For this reason CORBA between Java and C++ is a better
choice for heterogeneous systems. This is typically the sit-
uation in control systems where the hardware is controlled
via non-Java programs.

Jini is SUN’s proposal for controlling hardware with
Java. It is intended for managing a group of distributed
objects over the network. It provides a naming service,
discovery service, and proxy service. Jini works together
with JavaSpaces, Jini’s persistent store and naming space.
Although Jini is aimed at control systems so far very few
devices are delivered with Jini support. Consequently Jini
is still in its infancy stage in accelerator and telescope con-
trol systems yet and as such has not been heavily tested for
scalability, robustness, performance yet. Jini

Examples of accelerator and telescopes control systems
using Java are :

1. Cosybeans - graphical widgets specifically developed
for accelerator control from Cosylab

2. CERN alarm system - a CORBA to JMS bridge

3. TSRF synchrotron beamlines - a Jini-Javaspaces
based control system

4. JoiMINT - a Java based monitoring tool which is web
enabled

MICROSOFT WORLD

The Microsoft world refers to the range of Microsoft op-
erating systems and products running on them. It is an im-
portant world because of its size and financial clout. Ini-
tially the Microsoft world was limited to the desktop but
recently it has entered the embedded world and the server
world. Microsoft based control systems have been rare in
the accelerator and telescope control systems. The reasons
for this are that the Microsoft systems are not designed to
run in controls environments where resources are limited.
Microsoft products did not used to integrate the notion of
distributed computing very well and there are problem with
reliability and recently viruses. Add to this the closed na-
ture of Microsoft platforms and it is not surprising that
many control systems restrict their use of Windows to op-
erator consoles. Nonetheless some control systems have
been built successfully using only Windows based prod-
ucts. The recent arrival of Java has opened up Microsoft
to multi-platform projects. All this does not mean that Mi-
crosoft does not have a strong development strategy and it
should be ignored. On the contrary the large base of pro-
grammer’s using Microsoft products creates an important
player in the middleware arena.

Microsoft’s latest strategy is based on .NET. .NET is as
it names indicates based around the Internet. It is a frame-
work for developing applications and distributing them as
web services. .NET is completely object oriented. All
objects in a .NET application are derived from the class
System.Object. This permits all objects to offer the same
minimum services. Objects are packaged as .dll’s or .exe’s
and shared amongs .NET applications. All .NET objects
contain a description of what interfaces they support. This
means they do not need to be registered in a repository and
can be immediately made available as shared objects with-
out any further action. This is in contrast to the IDL ap-
proach of COM and CORBA which needs an extra step.
The advantage of .NET is that all objects can be made avail-
able as web services. This is a useful service but it is not
the main requirement for control systems. Web services are
often too slow for doing controls and are therefore mainly
used for supervision. .NET is based on SOAP and XML.
These are also ”slow” protocols. It is therefore unlikely
that .NET becomes a major player in control systems un-
less there is a major change in the way control systems are
build and the web becomes pivotal in control systems. It
is more likely that .NET gains acceptance for providing a
web services as an add on feature for control systems but
not as the main framework for doing hardware access and
process control.

PROTOCOLS

Protocols are a formalisation of what is sent between two
distributed components. Most of the time the protocol is
what is sent out on the physical medium (wire) but it can
also be used when there is no wire i.e. locally. There is
sometimes a confusion between protocols and middleware.

Proceedings of ICALEPCS2003, Gyeongju, Korea

325

Let it be clearly stated that a protocol on its own does not
represent a complete middleware solution. A protocol pro-
vides the possibility to call a method on a remote object or
to pass it data. A protocol usually does not offer a naming
service, security, a database interface etc. Here is a list of
the common protocols in use today.

RPC

Remote Procedure Calls (RPCs) have been around since
the late 1980s. Their principal role was to make a remote
call to a different machine look like a local call. They take
care of preparing the call parameters to pass them over the
network, and returning the data to the caller. They repre-
sent an evolution over raw sockets because they take care
of the different data representation between machine. Tra-
ditionally RPCs are procedure based as opposed to object
based. Some well known RPC’s are :

• ONC/RPC - the SUN RPC which is part of the
NFS file protocol, very widely available and therefore
widely used

• DCE/RPC - the RPC from the OSF which was also
adopted by Windows for DCOM. Since the demise of
OSF the DCE/RPC is not used on Unix platforms any-
more and is restricted to DCOM users.

IIOP

The IIOP is the main protocol for CORBA. It is sup-
ported in Java 2 too. A low level protocol which is used
for marshalling and unmarshalling data on the network.
Largely transparent to CORBA users.

RMI

The remote invocation protocol for Java.

SOAP

A protocol based on XML which can be used for doing
RPC as well. The RPC usage of SOAP is poorly defined.
Usage of XML allows exchanging structured data types as
well as simple types it is possible to send SOAP messages
via http. SOAP is defined by the W3C consortium and is
supported by Microsoft and IBM amongst others. Every-
thing in SOAP is done in ascii and it is therefore a slow pro-
tocol mainly being used to exchange information on a peer
to peer basis via web servers. SOAP is not really suited for
accessing hardware in control systems whereperformance
is required.

XML/RPC

XML/RPC is a variation of SOAP. It is XML based and
has been developed mainly because SOAP did not imple-
ment RPC calls. It has similar features to SOAP but simpler
to use.

EPICS/CA

EPICS Channel Access is mentioned here only because
it is the main protocol for EPICS control systems which are
widely used in the accelerator and telescope community.
Channel Access is based on sockets. It runs on multiple
platforms, is very efficient, uses a subscribe and publish
mechanism to inform multiple clients simultaneously and
is implemented in C.

THE FUTURE

The main trend emerging from the middleware technol-
ogy evolution is that objects are being replaced by compo-
nents. Components are specialised objects with a minimum
set of interfaces in order to support the specific needs of
each system. Most systems including control systems have
been doing this implicitly for years already. The standard
component models which are appearing are very interest-
ing for control systems builders because they open the op-
portunity for more software reuse and sharing. In the future
it might even be possible to buy software components off
the shelf like we buy hardware today.

The next step in middleware is towards adopting com-
mon models. The OMG is working on MDA (Model
Driven Architecture) to setup standards for models in dif-
ferent domains. These models are defined in standard
platform independant languages like UML. Tools are be-
ing written to convert these Platform Independant Models
(PIM) to source code. This is a very ambitious vision of
the future. If it succeeds it would bridge the technology
difference between the various middlewares and platforms
once and for all.

CONCLUSION

Which middleware to choose then ? We have tried to
show in this paper that middleware is evolving fast and
there is no clear winner and might never be one. For the
moment heterogeneous systems still rule in the control sys-
tem environment. CORBA and J2EE are the best choice
if you want to stay open and multi-platform and multi-
language. .NET is the most obvious choice if you want
to run only on Windows.

REFERENCES

[1] J.M.Myerson, “The complete book of middleware”, Auer-
bach Publications, 2002.

[2] N.Wang, D.C.Schmidt, C.O’Ryan, “An Overview of the
CORBA Component Model” in “Component-Based Software
Engineering: Putting the Pieces Together”, (G.Heineman,
B.Councill, eds.) Addison-Wesley, Reading, MA, 2001.

Proceedings of ICALEPCS2003, Gyeongju, Korea

326

