
ABEANS: APPLICATION DEVELOPMENT FRAMEWORK FOR JAVA

I. Verstovsek, M. Kadunc, J. Kamenik, I. Kriznar, G. Pajor, M. Plesko, A. Pucelj, M. Sekoranja,
G. Tkacik, D. Vitas, Cosylab, Ljubljana, Slovenia

Abstract
Abeans is the next generation of Cosylab's Java based

client framework for building control system applications.
It has been ported, plugged to such different CS as those
of DESY (TINE), SNS (EPICS) and GSI. At the moment
we are working on the installations for ALMA project by
ESO and for Data Acquisition group at JLab. Abeans
consists of two parts, Abeans for control and CosyBeans.
Abeans for control provide application services and the
mechanisms that allow simple implementation of data
flow between the local application and the remote control
system. This task is realized in two layers. Firstly, Abeans
define a model that is a layer of Java Beans components
that represents controlled objects. Secondly, Abeans
define a plug which is a driver layer, specific to a given
model and an underlying communication system. In
addition, Abeans provide several useful services: logging,
exception handling, configuration and data resource
loaders, authentication, and policy management.
CosyBeans provide clear and consistent visualization of
dynamic data with standardized presentation of alarms,
monitors and connection status. In this article we present
the basic concepts of Abeans and latest developments,
such as the BACI model, developed for ESO, the
possibility to write CosyBeans GUI components as JADE
agents for JLab and AbeansDirectory, an Abeans service
that is an implementation of JNDI DirContext. We
continue by outlining some use cases where we show how
these technical solutions help solve concrete problems the
application programmer is facing in the real life. We will
look at a generic application Object Explorer that is able
to display and modify any value that is accessible by a
given control system. This means that the same
application can be used to explore TINE, EPICS or ACS
CORBA based system. Second example will be a
specialized panel that displays and controls values of a
remote physical device. We will show that by using
Abeans, the application developer just needs to take care
of the user interface – by means of CosyBeans graphical
displayers, he can construct a fully functional application
in a visual editor without writing a single line of code, the
lifecycle of remote entities and the installation of services
is performed by the Abeans. As a third example, we will
show how to make use of the Abeans when developing a
complex application for machine physics that interacts
with a large number of physical devices and depends
heavily on the services provided by the framework.

INTRODUCTION
We will present what Abeans are today through a

historical perspective, describing their evolution from the
first release to the current front runner – Abeans Release
3. In section 3 we continue by explaining the basic

concepts of Abeans: models, plugs, services and
CosyBeans. Section 4 provides a quick glance into a
variety of control systems and the benefits and challenges
one is faced with when using them.

Section 5 shows how lugging Abeans to a given CS
facilitated finding a particular solution for a given issue
and in parallel explains some additional Abeans concepts.
In section 6 we summarize and try to show how Abeans
can provide general solutions to specific problems. We
conclude by outlining a path for further evolution of
Abeans.

A BRIEF HISTORY
The story of Abeans began in 1997 when a group of

students led by Mark Plesko started the development of a
control system for the accelerator ANKA in Germany
based on CORBA middleware [1]. As the students mostly
could not work on a regular basis, tasks of sufficiently
small size had to be made that required well-defined and
stable interfaces, both in hardware and software. A good
design was crucial insofar as it partitioned the project into
small and manageable tasks, which did not require a lot of
extra work to assemble in the end. It was also important
that the assembly of the pieces would not pose extra work
[2].

This line of reasoning lead to horizontal division of
tasks and responsibilities: each team member needed to
master and implement a specific module, instead of being
responsible for the control of a particular kind of
equipment, which would correspond to vertical division.
Such modules were generic and thus not related to
specific equipment in order to hide complex details from
application programmers. From this arose the idea of a
Java-CORBA wrapper for the developers of Java
applications that would hide the details of CORBA. The
wrapper was very thin, exactly replicating the CORBA
IDL interface, but without the CORBA syntax. There was
almost no additional functionality. This was the first
release of Abeans.

The concept to have a wrapper for communication
between the remote control system and the application
developer was transferred to other systems as well, such
as RIKEN and ESO. In order to achieve this, the concept
of a plug was introduced: a plug is the part that is
responsible for translation of requests originating in the
GUI to a communication protocol used by the control
system and for the interpretation of responses produced
by the remote system. The purpose of the plug was to
keep the interaction with GUI constant, while allowing
for communication protocol to change. Plugs for several
different CORBA systems were developed. This was the
second release of Abeans.

Proceedings of ICALEPCS2003, Gyeongju, Korea

327

In addition, the second release made more extensive
use of Java Beans features and declared a consistent set of
events and properties that facilitated RAD development.
Features central to some control systems (but not present
in the others), such as packed monitoring, access to the
naming service and remote logging, were integrated as
late additions.

Thus, hiding the implementation specifics of the remote
layer is not everything there is to the story and moreover,
late additions were difficult to abstract into
communication-system-independent concepts. To us these
facts indicated the need for a new Abeans design, named
Abeans Release 3 (simply referred as Abeans from now
on). The main concepts of the new design are discussed in
the next section.

BASIC CONCEPTS OF ABEANS
Given some complex software system, let us say a

distributed system or for example a database, Abeans can
firstly be used to build a model of the complex controlled
system, secondly to build a plug for communication with
the complex system and finally to organize services not
related directly to the complex system, but to task of
application building. In addition, a separate part of
Abeans is dedicated to the visualization of remote data –
this part are the CosyBeans.

Model
Abeans provide the building blocks for constructing an

object-oriented representation of some complex system. A
model is a set of Java classes that represent the
components of a given system, and those classes are
common to all systems from a certain functional /
problem area. In other words, in order to control physical
devices such as power supplies, vacuum pumps, etc.,
Abeans declare, for each physical device, an object
instance in the OOP sense, and define the lifecycle,
containment and relation to other services.

The fist model that was implemented was the Channel
model – the remote data is accessible through separate
channel objects and is well suited to model systems that
are flat (not organized hierarchically), like for example in
EPICS or TINE protocols. There is one model for all
channel based systems (not a separate model for TINE
channel, and EPICS channel).

The second is the BACI model – here a set of
properties can be part of a hierarchical entity, for example
a device, that mirrors the logical structure of physical
devices, like power supplies. The main point is that the
device is a Java object. This model was primarily
developed for ESO and uses ACS CORBA plug below it.

Plug
The concept of a plug was already mentioned in the

historical introduction. Abeans usually communicate with
some already existing software that offers access to the
data. A plug is that part of the Abeans system that is
responsible for translation of requests originating in

Abeans (in GUI, services, etc.) to a communication
protocol used by the controlled system.

So far, we have implemented plugs for TINE protocol
for DESY at Hamburg, EPICS plug that communicates to
the JCA library, UFC plug for the protocol used at GSI,
and ACS CORBA plug for ESO.

 Service
Although two Abeans applications that use two models

for the control of two software systems differ in their
basic purpose, they still contain a lot of shared
functionality. Error reporting, logging, resource loading,
configuration management and similar tasks can be
delegated to a body of shared services, which is
implemented once and for all. This approach reduces the
amount of coding and guarantees consistent behavior,
look and feel and similar functionality across all
applications developed with the Abeans framework.

So far we have implemented the following services:
configuration service, data resource service, debug
service, exception handler service, report service and
thread pooling service.

Abeans also offer standard interfaces for access to
distributed services (i.e. services provided on remote
machines), such as distributed naming service, or a
distributed archive. We used existing technology where
possible: for example, access to object directories (such as
TINE Name server or ACS Manager) is done through
standard JNDI (Java Naming and Directory Interface).
Consequently, it is possible to develop a directory
browsing Abeans application, which will run on all
Abeans plugs – this is the Object Explorer. Similarly,
distributed archive service can access archive data in
remote archive servers. Archive reader application
developed for DESY uses this service of Abeans.
However, since the same service will be implemented for
EPICS as well, we will be able to reuse the same
application to access EPICS archives.

ISSUES RELATED TO VARIOUS CS
The purpose of this section is to provide some

examples of control systems we have experience with and
to present some specific challenges one faces when using
them.

SNS, Diamond (EPICS): EPICS has a flat structure of
its database. The central entity is the Process Variable
(PV). The only way to define a functional container for
PVs, i.e. a device, is to use a naming convention or to
provide additional data stored in some sort of a database.
Both approaches require the application developer to look
for additional sources for the data, reducing transparency.
Is there a way to provide hierarchical data to the
application developer so that s/he would not have to know
and explicitly search for additional information about the
hierarchical structure of the control system?

In addition, the names of the PVs in EPICS
applications must be hard-coded, there is no general way
to browse for all the channels on the network.

Proceedings of ICALEPCS2003, Gyeongju, Korea

328

ESO, ANKA (CORBA): Using CORBA might seem
complicated for a beginner or an inexperienced
programmer, the learning curve to understand the stanzas
(initializing ORB and POA) required to get a CORBA
based client application to run is quite steep.

On the other hand, CORBA provides plenty of CORBA
services that can be used on the device server layer
(interface repository, naming service, etc), but lacks
components for visualization one could use in the client
applications.

GSI (UFC, ACS): The GSI accelerators are operated
by a control system using VME computers on the device
server level and OpenVMS workstations for the operator
interface. Both layers communicate by a proprietary in-
house protocol which is, on the client side, implemented
for OpenVMS only. In addition, there is also one server
which translates UFC protocol to TCP/IP based
communication. After 15 years of operation, GSI is in the
process of modernizing its control system in hardware
and software.

The existing GSI control system cannot be completely
replaced in a short time, to make a smooth transition, the
GSI control system and ACS, the new control system
candidate [3, 4] have to be supported in parallel during
the transition period, both on the device server and the
client application level – client applications must know
how to connect both to new and to old devices. Is it
possible to write applications that will talk to both control
systems at the same time? Will it be possible to use these
applications after the transition period is over without
much modification to their code?

JLab-DAQ (JADE, EPICS): In Jefferson Lab, a new
experimental hall will be built (Hall D). The possibility to
use some other CS than EPICS or CORBA to control the
experimental hall is being considered, perhaps the
Channel Access protocol without EPICS running on top
of it or JADE, an agent based protocol. However, Hall D
would still need access to some EPICS-based devices, so
it would be interesting to use a facade to hide EPICS, and
to have client applications that are able to connect to two
control systems at the time.

SNS (XAL): In Spallation Neutron Source, XAL – a
layer for developing machine physics applications – is
being developed on top of EPICS [5]. In parallel, SNS
wants to have generic applications for oversight of the
whole control system. As well, SNS is interested to use
GUI widgets and wants them to connect to the remote
EPICS layer.

ADDRESSING THE ISSUES
In this section, we will try to explain how each issue

from the previous section was addressed using Abeans.
Along the way, we will show additional concepts and
features of Abeans.

Introducing hierarchies to EPICS
Abeans directory is a service that allows the application

developer to do a lookup of the structure of names of

remote objects. For example, available EPICS channels
may be arranged into a sort of naming hierarchy based on
some criteria (physical layout of the remote system, etc).
Abeans plug for EPICS is responsible for providing
information to the Abeans directory – the plug can obtain
hierarchical information from the naming convention,
relational database, some XML file, etc.

Abeans directory allows the developer to browse all
available names for this plug, as if they were placed in a
tree. The implementation of Abeans directory is in
accordance with the JNDI specification which is a Java
core platform. The added value for the developer is an
intuitive and standard way to access the hierarchical data
and not having to worry where the data comes from.
Furthermore, the tree already has a GUI component that is
able to represent it, the Cosy Navigator, which is a part of
CosyBeans, and is displayed on Figure 1.

Figure 1: Cosy Navigator, a GUI component used to

display and manipulate hierarchical device data.

Once the plug fills up the JNDI tree, the application can
browse it and get all the channel names without having to
know them in advance, thus eliminating the need for hard
coding the names in the client application.

The directory actually contains meta-information about
a named entity that can be accessed without actually
making a connection to that entity. [6, 7].

Abeans can bring OO devices to EPICS
The discussion above refers to obtaining the references

to channel names and constructing the channel objects, all
the time using the Channel model. However, by having
access to hierarchical data, it is possible to develop the
idea further – to construct a logical representation of the
device on the OO level. For example, one can have an
object of type IonPump and access its properties (PVs)
without having to explicitly connect to them or to know
their names – once the user constructs the IonPump

Proceedings of ICALEPCS2003, Gyeongju, Korea

329

object, s/he can retrieve its pressure property solely by
invoking ionPump.getPressure().getValue().

In addition to properties, a device can also define
actions: functions that can be invoked directly on the
device: instead of having a POWER property set to ON
and OFF enumeration (effectively, writing 0 and 1 into
it), actions can be invoked as calls to the functions on the
IonPump device: ionPump.on() and ionPump.
off(). Internally, the device object should map these
calls into setting the appropriate values on the POWER
PV.

The hierarchical model for EPICS will be developed in
collaboration with Diamond [8]. When implementing the
hierarchical model for EPICS it will be possible to reuse
in great extent an existing implementation of a
hierarchical model for Abeans – the BACI model that is
used for ACS CORBA control system. However, there
are some differences between the two cases: In the case of
the model for ESO, device objects are static – they are
Java classes generated from the CORBA IDL files (The
IDL files define the structure of the device object). In the
case of EPICS, the definition of what is a device (what
properties and actions a given property contains) should
be read from the directory.

Adding value to CORBA
As described in our brief historical introduction, the

reason for the creation of Abeans was to hide the internal
workings of CORBA from the developers of client
applications for the control system for ANKA. Abeans
were very successful in this respect. For example, the
author of this article was able to develop the ramping
application which accessed more or less all of the power
supplies in the system without knowing at all what
CORBA is all about! Even if one is proficient in CORBA,
using Abeans still adds value – the developer has to write
the stanza to connect to CORBA only once (in the plug),
therefore reducing the need to copy and paste between
different applications, as a consequence this increases the
quality and maintainability of the code.

CORBA implementations are rich in providing
additional services that are extremely useful for
developers of device servers. These services include the
interface repository, naming service, telecom log service,
notification service, etc. By applying clean device
patterns, ACS implements several system-wide services
on top of these, such as logging, exception handling,
connection management, etc. Using Abeans, it is easy to
encapsulate these services and provide them to
application developers as remote services, as described in
section 3.3. Abeans user does not even realize that his
“familiar” Abeans services in reality talk to underlying
CORBA services.

Abeans enable a smooth upgrade of the GSI CS
In November 2002, a proof of principle Abeans plug

was created for GSI. The plug connected Abeans to the
UFC layer. Abeans plug was connected to a gateway
server written in Java that was accessible via the TCP/IP

protocol. The next step is to define an ACS based
CORBA-object on the device server level. During the
transitional period the applications should also be able to
communicate with the old devices running on UFC.

Figure 2: Abeans Client (top right) uses two plugs

simultaneously, the UFC and ACS plug. Taken from [4].

One possible approach that enables a sequential
upgrade is to use the following feature of Abeans: In the
same application, it is possible to instantiate two plugs
and therefore connects to two control systems at the same
time. These plugs are the CORBA-UFC plug for old
devices and ACS CORBA plug for new devices. During
the transition period, more and more devices will be
running on ACS. On the client level, changing the device
to connect to a different plug is a matter of changing one
entry in the configuration file without changing the code
at all, which greatly simplifies the transition.

In JLab-DAQ Abeans are clients and servers
A very interesting possibility is to use Abeans for all

the applications in Hall D. Because of the agent oriented
approach of JADE, the main requirement in this case
would be that Abeans applications communicate with
each another – Abeans would be used as servers. This
possibility is foreseen in the Abeans architecture, in fact,
Abeans are currently used as server applications in the
project for DESY, Germany – in this implementation
SOAP protocol is used. Another benefit of using Abeans
for all applications in Hall D is that the same Abeans
application can be used to connect to multiple layers of
the control system by means of different Abeans plugs,
making the infrastructure very convenient both for the
end users and for the application developers.

Abeans would be used to hide EPICS as well as for
connection to JADE and to use them to control and
configure the experiments. In fact, experiment control is
not much different than hardware control – one always
controls physical objects which have a state that exists
outside of your local Java application.

In SNS Abeans are a GUI and services library
For the SNS project, XAL was developed to model the

accelerator from the point of view of a physicist. In the
case of SNS, Abeans are primarily used as a library –
developers take from Abeans what they need and

Proceedings of ICALEPCS2003, Gyeongju, Korea

330

incorporate it into the applications. In this case, the
CosyBeans GUI widgets are the ones that are used most
often, on figure 3 one of them, the Wheelswitch is
displayed. The others are Gauger, Ledder, Object Table,
Piper, Time selector, etc.

Figure 3: Wheelswitch, one of many GUI components of

CosyBeans.

WHAT DO WE LEARN FROM THIS?
In previous sections we have taken a look at a wide set

of issues one faces when dealing with different control
systems. At a first glance, the problems did not seem to
have much in common, and the solutions that were
implemented with Abeans could have also been
implemented in some other manner. However, at the end
of the day, we have seen that Abeans addressed these
issues in a unified way, by applying the basic concepts
described in section 3.[0]

If we are allowed to oversimplify a bit, the task of
writing control system boils down to a data flow problem
where we must:

a) define and transform between possible formats of
data (e.g. a double number that is annotated with
characteristics),

b) define a (possibly hierarchical) object-oriented
model of physical devices that provide access to data
sources,

c) in step b) focus on the fact that modelling is
functional and does not reflect specific HW or
engineering choices.

Because functionality is shared between different
machines, while HW and engineering details are not, and
we take care to apply step c) consistently, Abeans provide
an uniform abstraction which constitutes their added
value in the field of control systems.

FURTHER EVOLUTION
Abeans were developed in order to solve problems that

one faces when writing applications for control systems.
However, a large number of application development
issues are shared between applications in various problem
areas, say for banking or any other application that uses
distributed computing. Therefore, the same problems that
Abeans solve are also being solved by some other, much
wider frameworks.

One of the main priorities for further Abeans evolution
is to make the integration of existing 3rd party software

easier. In this manner it would be possible to integrate
Abeans with a given control system not in a manner that
the entire system is wrapped by Abeans (in some cases
this might be an overkill), but to use Abeans in line with
the existing system. One example where this is already
the case is SNS where Abeans are used as a library. In
this case it is possible to use Abeans' services and other
useful “goodies” and at the same time to use the existing
access to the system in the same application.

CONCLUSION
In the article we have presented how Abeans evolved

over time and what have become today – they can be used
either as a self-contained client application writing
framework, or as a GUI, communication or services
library. Recently, significant amount of time was devoted
to write a bunch of extra documentation, also strict
versioning was applied to Abeans code.

In general, we moved to a higher quality development
process. The distributions can be downloaded from the
Abeans homepage [9]. We believe, and a bunch of
installations all over the world show, that Abeans can add
value to both the application developers and end users of
the control systems.

REFERENCES
[1] I. Kriznar et al, The Upgrade of the ANKA Control

System to ACS (Advanced Control System),
ICALEPCS 2003, Gyeongju, Korea, October 2003.

[2] M. Plesko et al, A Guerrilla Approach to Control
System Development, ICALEPCS 2001, San Jose,
California, USA, October 2001.

[3] G. Chiozzi et al, The ALMA Common Software:
Status and Developments, ICALEPCS 2003,
Gyeongju, Korea, October 2003.

[4] K. Höppner et al, Integration of Abeans and ACS in
the GSI Controls Environment, ICALEPCS 2003,
Gyeongju, Korea, October 2003.

[5] J. Galambos, et al, XAL Application Programming
Framework, ICALEPCS 2003, Gyeongju, Korea,
October 2003.

[6] M. Plesko et al, Where and What Exactly in
“Knowledge” in Control Systems, ICALEPCS 2003,
Gyeongju, Korea, October 2003.

[7] G. Tkacik, A Reflection on Introspection, ICALEPCS
2003, Gyeongju, Korea, October 2003.

[8] M. Heron et al, Diamond Light Source: Current Status
and Developments, ICALEPCS 2003, Gyeongju,
Korea, October 2003.

[9] http://abeans.cosylab.com

Proceedings of ICALEPCS2003, Gyeongju, Korea

331

	ABEANS: APPLICATION DEVELOPMENT FRAMEWORK FOR JAVA
	INTRODUCTION
	A BRIEF HISTORY
	BASIC CONCEPTS OF ABEANS
	Model
	Plug
	Service

	ISSUES RELATED TO VARIOUS CS
	ADDRESSING THE ISSUES
	Introducing hierarchies to EPICS
	Abeans can bring OO devices to EPICS
	Adding value to CORBA
	Abeans enable a smooth upgrade of the GSI CS
	In JLab-DAQ Abeans are clients and servers
	In SNS Abeans are a GUI and services library

	WHAT DO WE LEARN FROM THIS?
	FURTHER EVOLUTION
	CONCLUSION
	REFERENCES

