
I/O CARDS WITH BUILT-IN LINUX AND TCP/IP BECOME TURNKEY
SYSTEMS

D.Golob, U.Platise, M.Plesko, M.Sekoranja, Cosylab and J. Stefan Institute, Ljubljana, Slovenia

Abstract
We have developed a family of I/O cards with onboard

Linux and Ethernet, which accept Industry Pack modules.
Combining those cards into a small casing and adding
control software packages such as EPICS or ACS,
provides for compact software driven turnkey systems. It
has always been our goal to reduce the number of
hardware and software interfaces and the flavour of
different fieldbusses to a minimum. With the advent of
low priced mass produced embedded controllers with
high CPU power and an array of standard interfaces such
as Ethernet, USB, RS-232, etc., it became possible to get
rid of the fieldbus completely, even in highly distributed
applications, bringing Ethernet and TCP/IP down to each
single I/O card. We have opted for a single board
computer (SBC) with a StrongARM CPU and Ethernet
interface, for which several low footprint solutions exist
on the market. The SBC is positioned as a mezzanine
module on our I/O cards. The CPU power and the
available RAM allow for normal operating systems and
control programs to run. We have customized a standard
Linux port for the StrongARM to our SBC. This allowed
us to port the CORBA-based Advanced Control System
ACS onto the I/O card. An EPICS port is under way, OPC
is equally possible. This allows to integrate the I/O card
seamlessly into any control system, without the necessitiy
for any extra drivers. As both Linux and Ethernet are
indeterministic, we need another realtime component to
handle timing and I/O synchronisation. This is done with
a CPLD, which is built into each of our I/O cards. The
CPLD can be programmed from Linux via JTAG from the
SBC for all realtime tasks that are not too computing
intensive. It serves as an on-board timing module,
function generator and general digital interface. It also
drives the Industry Pack (IP) standard interface, which
allows all commercial standard IP modules to be attached
to a slightly modified I/O card of ours. First applications
of this approach are a turnkey timing system and a
vacuum pump current measuring unit.

INTRODUCTION
Network attached devices (NAD) are here. There are

many good reasons why, which we will not go into, but
refer to other papers in this session of the ICALEPCS[1].
The main advantage as we see it is that by using NADs
we can completely avoid any fieldbus solutions. No
matter which fieldbus one chooses, it is far less
standardized than Ethernet and, even more important, the
TCP/IP protocol. Using a fieldbus usually results in some
proprietary protocol, while TCP/IP is of course supported
everywhere.

Our goal therefore is twofold:

• To build sufficiently low-cost I/O cards that would
have Ethernet on-board.

• To provide a sufficiently strong processor that would
allow to run a standard operating system (in our case
Linux) that supports not only the pure TCP/IP stack
but also allows conventional distributed processes to
run directly at the I/O level

In short, our mission is to “Bring Ethernet and TCP/IP
to the Masses”. The real usability of such an approach is
that the interface from the I/O board to the control system
becomes the API of the control system itself – nothing
new or proprietary is added.

The development dilemma that we have faced was how
to develop what we want but still use as much
commercial of the shelf (COTS) components as possible.
We discuss the options and our decisions in the following
sections.

ASSEMBLE YOUR OWN TURNKEY
SYSTEM

The embedded market offers less standards than the
VME or cPCI world. There are cheap CPU/Ethernet
modules in abundance, but there is no global standard that
would allow to interchange those boards. Typically, they
are considered for turnkey solutions where the hardware
never changes after installation. Due to lack of standards
there are of course many ingenious solutions: some cards
come in the PC-Card format, others as DIMM modules.
Unfortunately, none are pin-compatible, unless one resorts
to PC104, which costs typically twice as much.

Other commercially available items, albeit not turn-key,
are a plethora of I/O driver chips and Industry Pack (IP)
modules that one can get for nearly any type of I/O.
Industry Pack modules are used mainly in VME systems,
on non-intelligent carrier boards. However, their protocol
is very simple and can be therefore easily implemented on
a logic chip. IP modules are also reasonably cheap, since
they come from competing manufacturers.

It is therefore possible to just combine the concept of
low-cost Single Board Controllers (SBC) with the I/O
capabilities of I/O drivers or, for more complex
requirements, IP modules, by developing a simple board
with just some glue logic. To test the concept, we have
built some dedicated I/O cards that accept an SBC as
described in the following subsection.

The Single Board Computer CEP
We have decided to use the SBC called CEP, which

stands for Custom Embedded Platform. Apart from the
fact that the company that produces it is only 40 km away
from us, it also has the lowest price on the market that we
could find.

Proceedings of ICALEPCS2003, Gyeongju, Korea

350

The CEP has the following characteristics:
• StrongARM, up to 32 MB Flash and 64 MB RAM

(In preparation are modules with the next generation
CPUs PXA 210 and PXA 250)

• RISC core, DSP specific instruction set
• High performance: 235 Dhrystone 2.1 MIPS @ 206

MHz
• LCD Driver Interface
• Fast Ethernet IEEE 802.3/802.3u 100 Base-Tx 10

Base-T
• Audio Codec Interface
• PCMCIA Interface
• Serial Interface RS232/RS485
• USB SlaveSingle 3.3V Power, Low power (normal

mode)
• —<240 mW @1.55 V/133 MHz
• —<400 mW @1.75 V/206 MHz
• High Integration: 54.0 x 85.6 mm, PCMCIA board

format including optional extension connectors

Our Carrier Board
So we bought the CEP and all we had to develop was a

carrier board that accepts the CEP as a mezzanine
module, provides an Ethernet transceiver, some UARTS
for RS232 and a logic chip with glue logic. We have
decided to use a CPLD (complex programmable logic
device), which appears better suited for such tasks than a
FPGA – but the concept is exactly the same. The format
of the card is 160mm x 100mm, the Europe standard

The first prototype had several digital communication
I/Os just to show the principle:

• 7 x RS-232 Ports
• 8 x RS-485 Ports
• 9 x General Purpose Optically isolated I/Os
• 5 Mbit Fibre Transmitter
• 5 Mbit Fibre Receiver
• 12 MBit USB Slave Port
• 10/100 Mbit Ethernet Port
• I2C Interface
• Cypress 1-Wire interface
• CAN bus interface
We call it Muserio, which stands for MUltiple SERial

I/O.
Eight RS-485 ports, six RS-232 ports and the fibre

optics receiver and transmitter are attached to the Cypress
high-density CPLD and may be configured as required by
an application with the VHDL code. The seventh RS-232
port is directly connected to the Intel StrongARM
processor. It is used as a terminal port for configuration
purposes. Besides that the Muserio provides nine general
purpose current limited I/O that can be used to build up a
complete timing system as described in a further section.

The I2C, 1-Wire and CAN protocols must also be
implemented in the Cypress CPLD.

Linux and TCP/IP
It was very easy to port Linux onto the processor.

Currently, we have a version with “normal” Linux and on

top of it ACS, our CORBA-based control system. We are
preparing a version with EPICS for the Swiss Light
Source.

The normal CEP StrongARM board has 64 MByte of
memory, which is more than many VME controllers have.
So that should be definitely enough for all our needs.

In fact, after some optimizations we need only 2 MB
for Linux. Then we need for a free version of CORBA,
which comprises ACE (1.8 MB) and TAO (3.3 MB) a
total of 5.1 MB. This means that even on the cheapest
CEP StrongARM board, which has 16 MBytes, we can
run our complete control system and still have plenty of
memory left for process data.

DEVELOP ONLY WHAT IS NECESSARY
Once our system was up and running after very little

development time, we wanted to develop several
dedicated carrier boards. We first developed a board that
controls 4 motor axes, completely with encoders and end
switches. However, while the hardware was easy, the
programming of all necessary motor functions in VHDL
on the CPLD turned out to be far too exhaustive for our
small team. Originally, we also wanted to develop an
analog board with ADCs and DACs, but each customer
has his own requirements. That means that we would have
to develop and maintain a big number of carrier boards.

Therefore we decided to develop only an Industry Pack
(IP) carrier card, and leave it to the user/customer to put
there any IP module she likes. There are many IPs with
ADCs and DACs of any type (low or high resolution, fast
or slow, etc.), and also for motor control, thus making our
motor controller obsolete in a flash.

The standard for IP modules suggests that there are 4
IPs on a 6U card (a standard VME card) and 2 IPs on a
3U card (Europe format). This assumes that all IPs are
only on one side of the card, because of the standard
widths of 1 inch. As we have also the StrongARM card,
we lose one slot. We could maybe squeeze one more IP,
but there would be already problems with cabling and
connectors: each IP module has 50 pins and a normal
three row Europe card connector has up to 96 pins.

So our standard Europe IP carrier card has only one IP
slot. We can of course develop a custom card that is larger
or takes more lateral space than a standard Europe card,
but that would be expensive. The problem is that we as a
Company can not offer to many options, otherwise the
development costs are too high. We can not expect high
sales numbers, therefore we should make few simple
modules that can be mixed, but not too many independent
solutions. This is actually the main reason, why we go for
IP modules, because we get flexibility, but not at the cost
of extra development.

Should people need more IPs controlled by a single
SBC, then we propose a different solution that we plan to
provide in the future: put for example 3 carrier cards
together in one box. Only one carrier has a StrongARM,
the others have only IP modules. They are connected
together via a simple local bus. Then the StrongARM

Proceedings of ICALEPCS2003, Gyeongju, Korea

351

controls all three IP modules. We can stack up to eight
carrier boards to one StrongARM.

TURNKEY : MAKE IT AN IOC
Certainly, there are cheaper solutions than our on the

market. After all, our processor is not the cheapest. Other
microprocessors, such as the Motorola ColdFire, are
cheaper and come with a TCP/IP stack. However, we go
for a turnkey system, such that our board becomes an IOC
(input/output controller, the basic node of a control
system) runs the control system core, such as ACS or
EPICS and other high level applications. The beauty of
such an approach is that the interface is really the control
system, not any electric interface or proprietary API. And
everything suddenly falls into place:

Form factor, mechanics
The carrier card is exactly Europe format. One can use

it either standalone in a neat box, a DIN rail mount, or put
several of them into an Europe crate. This is also the
reason, why we can not put 3 IP modules on one carrier,
because then we would have problems with connectors in
an Europe crate.

Power Supply
Our boards accept an external supply of 24V or 12V.

There is also a new standard, which is called “Power over
Ethernet” (PoE). According to this standard, the electric
supply comes directly over normal UTP Ethernet cables.
One can buy a switch which provides Ethernet + 48V
over UTP cables. The advantage of such setup is that
there is no need for local DC supplies. Our boards support
this new standard.

Direct AC 110/220V supply is also possible. We can
add a commercial AC/DC converter unit onto the card.
However, it will add up to the cost of the box and also
make it a little larger, because of the needed space. It is
usually more cost-effective to have one AC/DC converter
for several boxes and then distributed the DC low voltage
- either over PoE or locally in a crate.

Performance Tests
A simple scope simulation showed the following times:

4ADC*2bytes*3000values from input over network:
0.3 ms (ADCs)
3 ms (CPLD to Linux) (corresponds to 6 MByte/s)
0.032 ms (Interrupt latency & driver execution)
4 ms (conversion Int-> Double and averaging)
8-20 ms (UDP network transmission)
===========
15 - 27 ms (Total)
Which corresponds to a streaming-video view.
Alternatively, should one need to acquire and store a

burst of 30 seconds of data, as in a storage oscilloscope,
we get: 100 kHz * 4 * 2bytes * 30s = 24 MByte which we
can just dump into RAM for later transfer.

Linux Or Real-time - Not Our Dilemma
We don’t see any problems on porting RT Linux instead

of normal Linux or RTEMS, which is also a nice RT OS
for control systems. However, there is another, easier way
to provide a few simple real-time tasks that are much
faster than an OS can ever be.

The CPLD can do much more than glue logic. We use
the Cypress CPLD Quantum/Delta 38000/39000
Families, which have several pin-compatible chips. We
can take the more powerful one and program RT-tasks in
VHDL. For this we have developed a way to download
code from Linux via JTAG.

This makes the RT tasks safe against Linux reboots and
Linux takes care only of communication and of non-RT
applications. A result of this concept is described in the
following subsection:

A Turnkey Timing Box
We are currently designing a stand-alone timing

system, where each Muserio is a Timing System Unit
(TSU) that functions simultaneously as an event generator
and event receiver. All is implemented in VHDL on the
CPLD. The following features are planned:

• Fibre Optics/Copper Point-to-Point Input/Output.
• Multi-Point connection is possible on copper lines.
• The top-most TSU is synchronized with high-

precision reference to 50 Hz.
• Each TSU can synchronize to input and regenerate or

generate events on output channels (programmable
delay)

• Multiple Events per Transmission Line
• Precision Triggering with Transmission Delay

Compensation
• Event confirmation/acknowledgment support for

high-reliability systems.
• CPU Interface for Event/Data Packet Exchange, TSU

configuration, Event Generation/Spawning, and
more

CONCLUSIONS
Despite the nice idea, the main question that remains is:

“Is It Really Cost-Effective?”. The price per channel is
basically determined by the price of I/O and the price of
the crate and supply. If a VME crate is full, the price of
the crate and supply become negligible and VME is as
cost-effective as our turnkey solution or better.

So the potential of our approach is for cases, where I/O
is highly distributed and few channels are located
together. It may be a niche, but it is definitely there.

REFERENCES
[1] See for example L.R.Doolittle, Embedded Networked

Front Ends – Beyond the Crate, this conference.

Proceedings of ICALEPCS2003, Gyeongju, Korea

352

	I/O CARDS WITH BUILT-IN LINUX AND TCP/IP BECOME TURNKEY SYSTEMS
	INTRODUCTION
	ASSEMBLE YOUR OWN TURNKEY SYSTEM
	The Single Board Computer CEP
	Our Carrier Board
	Linux and TCP/IP

	DEVELOP ONLY WHAT IS NECESSARY
	TURNKEY : MAKE IT AN IOC
	Form factor, mechanics
	Power Supply
	Performance Tests
	Linux Or Real-time - Not Our Dilemma
	A Turnkey Timing Box

	CONCLUSIONS
	REFERENCES

