
OASIS: A NEW SYSTEM TO ACQUIRE AND DISPLAY THE ANALOG 
SIGNALS FOR LHC 

S. Deghaye, D. Jacquet, I. Kozsar, J. Serrano, CERN, Geneva, Switzerland 

Abstract GENERAL ARCHITECTURE 
To cope with the user requirements [1] for the Large 

Hadron Collider (LHC) era, a new system has to be 
developed for the acquisition and display of analog 
signals in the accelerator domain. OASIS, the Open 
Analog Signals Information System, extends the 
capabilities of the existing ‘new Analogue observation 
system’ (nAos) in many fronts: new acquisition hardware 
is supported to provide higher analog bandwidth to the 
users, a new distributed triggering scheme has been 
designed for greater flexibility and the software has been 
completely redesigned with openness in mind to allow 
easy upgrading and maintainability. This paper describes 
the architecture chosen to satisfy the new user 
requirements. The solution involves three tiers and makes 
use of the J2EE platform to communicate between the 
GUI and the middle tier. The front-end tier runs on Linux 
PCs in CompactPCI format, to support fast digitizer 
modules. A first prototype system, used for the extraction 
tests from the Super Proton Synchrotron (SPS) to the 
LHC, is also presented. 

We chose for the OASIS system a three-tier 
architecture as depicted in figure 1.   

Application Tier

Application 
Server Tier

Front-end Tier

 
Figure 1: General architecture 

The front-end tier has the responsibility to handle the 
hardware, the digitizer and the multiplexer modules. It 
provides hardware independent interfaces to the upper 
tiers. 

The application server tier has the responsibility to 
manage the resources, which are the acquisition channels; 
it routes the analogue signals to the best oscilloscope 
input and ensures the settings coherence among different 
modules. It is the mandatory passage for all the 
applications wanting to access the hardware. It brings into 
the system a level of indirection between the acquisition 
data and the hardware that carries out this acquisition 
allowing us to re-assign the digitiser hardware at run time. 

MOTIVATION 
In addition to the user requirements brought by the 

LHC, there are also strong hardware and software 
arguments to move from nAos to OASIS.  

Manufacturers are no longer building high performance 
digitizers in the VXI format. Nowadays >1GS/s modules 
are in CompactPCI format (CPCI).  

The application tier is itself separated in two layers. 
The lower layer, a client package, is a model of the virtual 
oscilloscope system. It gives access to all the classical 
oscilloscope features plus OASIS specific functionality. 
The other layer is the GUI, based on a VirtualScope 
component and uses the services offered by the client 
package. The VirtualScope component is intended to be 
reused in every application that has to work with analogue 
signal acquisitions. It is foreseen to have several 
applications with different features depending on their 
domain of use. The first application that has been 
developed is a viewer for the SPS extraction tests that 
were made during September 2003. 

Concerning software, the maintenance of the current 
system starts to become difficult with a Graphical User 
Interface (GUI) written in C using X/Motif, a domain 
where experts are becoming a rare resource. Moreover the 
application running in the front-end computers is not 
based on our standard framework [2] neither for the 
equipment access server nor for the real-time tasks. 

Finally OASIS will give us the opportunity to exploit in 
a more efficient manner the digitizer modules, which are 
the most expensive parts of the system, and to distribute 
more coherently the responsibilities among the different 
layers, which will bring openness to the system. 

The remaining of this paper will focus on the 
architecture of the system. Section 2 gives a view of the 
general architecture. Then, sections 3, 4 and 5 give more 
details on the front-end layer, the middle tier layer and the 
application layer respectively. The 6th and last section will 
give test results and what is foreseen for the following 
developments. 

The communication between the front-end tier and the 
application server tier uses the Control Middleware [3] 
(CMW), a CORBA based communication protocol that 
allows the application server tier to get, set and subscribe 
to the properties exposed by the equipment access server. 

For the dialog between the two upper tiers, we use 
either RMI/IIOP for synchronous commands or JMS for 
the asynchronous ones. 

Proceedings of ICALEPCS2003, Gyeongju, Korea

359



FRONT-END TIER  
ClockCounter

Scope

TriggerSignal

Mux{XOR}

External trigger
 

The front-end computer is based on a CompactPCI 
crate with an x86 CPU board running GNU/Linux. We 
use Acqiris DC270 digitizers [4] and Pickering matrices 
[5] for the trigger signal routing. The modules are 
accessed through a kernel mode device driver either 
written by us or provided by the manufacturer. 

It is foreseen to install these crates in technical 
buildings as close to the analogue signal sources as 
possible. Since those places are not very accessible, we 
needed to improve the reliability of the crate and that is 
why we bought diskless CPU boards and we made a 
diskless network bootable image (NBI) of the GNU/Linux 
operating system using the mknbi-linux program [6].  

Figure 3: Trigger interfaces exposed by the front-end tier. 

APPLICATION SERVER TIER 
We use, for the middle tier computer, a standard 

Pentium IV machine clocked at 2.4 GHz with 1 GB of 
memory. This machine runs RedHat Linux Enterprise [7] 
and the Oracle J2EE container OC4J [8]. The latter is the 
container where we deploy our Enterprise Java Beans 
(EBJ) [9] that implement the application server logic. 

The higher level software is based on our standard 
framework [2] composed of an equipment access server 
using the CMW and a real-time task communicating with 
the server through a shared memory segment.  

For the OASIS system, we use three different types of 
EJB: container managed persistence (CMP) entity beans 
for the persistence, session beans and message driven 
beans (MDB) for synchronous and asynchronous use 
cases respectively. 

 

{XOR}
Signal

Mux

Channel

Scope

 

With the CMP entity beans, we just need to develop an 
abstract class with the getter/setter methods for persistent 
data and to describe in an XML file how these data map 
to the Oracle database. Then the container is able to 
generate all the JDBC calls to implement the entity beans. 
Furthermore, we give the container the exclusive write 
access to the relational tables to improve access time by 
enabling the cache mechanism. For administrative 
purposes, we develop web pages that display the 
information stored in the database such as the current 
connections, the applications that use these connections, 
etc. 

Figure 2: Signal interfaces exposed by the front-end tier. 

The front-end computers provide the application server 
tier with several interfaces corresponding to the different 
services implemented by the hardware. Obviously, those 
interfaces need to be independent of the hardware that 
performs the function.  

Figure 2 shows the analogue signal part of the system. 
We have channels, which are contained in scopes, and 
signals, which represent the analogue signals to be 
acquired. We can connect these signals to the channel 
input either directly or using the multiplexer.  This last 
option will increase the number of signals that can be 
connected to a given crate. Of course this solution has a 
cost: the availability of each signal is decreased. 

The session beans are used when the work carried out 
by the application server produces a result that is needed 
by the application to continue, for example, when the 
application asks for the trigger signals available to acquire 
a given signal. The heart of the application server is the 
‘ConnectionManager’ session bean. This bean has the 
responsibility to connect the analog signal to the most 
appropriate hardware module taking into account the 
priority of the client asking for the connection. It has also 
the responsibility to publish the acquired data on the 
correct JMS topic after having resolved the indirection 
between the digitizing device, unknown by the 
application layer, and the logical connection, known by 
the application layer. This last part is the most ‘real-time’ 
part of the system since we aim at a delay between the 
end of the acquisition and the display in the application of 
about a hundred milliseconds. 

Figure 3 depicts the external trigger sub-system. Each 
oscilloscope module has an external trigger input. We can 
connect the trigger signal to this input either directly or 
through a matrix, an n-to-1 matrix. This solution is the 
most used one since it allows the user to change the 
trigger remotely. 

The last feature is the possibility to add a counter 
between the matrix output and the external trigger input. 
This counter can count machine related clocks such as the 
revolution frequency. 

Each interface presented in figures 2 and 3 has a set of 
properties the application server can work with. For 
example, the interface ‘Channel’ has a property AQN that 
contains the last acquired data. 

Finally, we have a MDB to handle the settings changes 
made by the user. This bean has the responsibility to keep 
coherent the settings of the different hardware modules 
belonging to a virtual scope.  

Proceedings of ICALEPCS2003, Gyeongju, Korea

360



 
Figure 4: The virtual oscilloscope component. 

As an example consider a virtual oscilloscope (VScope) 
with two signals connected but these signals are in fact 
digitalized by two different modules. When the user wants 
to change the trigger delay, the MDB has to find out 
which modules are used for this VScope and to change 
settings on both modules. 

APPLICATION TIER 
This last tier is the user interaction part. This is a 

standalone Java application launched using JavaWebStart. 
The application is composed of two parts.  

The first part is the client package; it relies directly on 
the application server, communicating with it through 
either RMI/IIOP or JMS. It exposes to the upper layer a 
model of the virtual oscilloscope system with concepts 
like VScope and VTrace. It hides the use of J2EE from 
the GUI which allows us to change the application server 
implementation if needed.  

The second part is the graphical user interface which is 
the non-generic part of the system, presenting specific 
features that depend on the application domain. The GUI 
uses services provided by the client package like signal 
menu, signals set definition and connection/disconnection 
demands. The central part of any application involved in 
analogue signals observation is the VirtualScope, of 
which a snapshot can be seen in figure 4. Its development 
is made around the EdPlot bean which is a plot bean 
developed at CERN. The VirtualScope component 
behaves like a four-trace oscilloscope and is the 
view/controller counterpart of the client package. 
Moreover, the GUIs that host the VirtualScope, one or 
several instances of the VirtualScope, can use complex 
features provided by it like cursor measure, envelop 
drawing and surveillance and reference display. 

TEST RESULTS AND FUTURE 
In September 2003, there were two days of SPS 

extraction tests. These were the first milestone for the 
OASIS system since we had to provide a way to monitor 

the kicker pulses used to extract the beam and the 
circulating beam. This very first prototype of the OASIS 
system only provided basic functionality. The prototype 
worked well even if some tuning is still to be done on the 
transport delay between the front-end computer and the 
application. 

In the future, we plan to extend the system to the VXI 
modules used in the previous nAos system. For that, we 
will need to develop front-end software that controls the 
VXI modules and expose the same interfaces as the ones 
depicted in figures 2 and 3. 

On the application server side, we plan to replace the 
application server machine by a HP ProLiant DL380 G3 
[10] with two Pentium Xeon at 2.8 GHz and 2 GB of 
RAM. Furthermore, we will continue adding functionality 
such as advanced routing algorithms in order to improve 
the signal availability. 

We will also continue the development of the 
VirtualScope component.  

REFERENCES 
[1] S. Deghaye, “OASIS: Requirements specification”, 

CERN LHC-CP Signals Working Group (SiWG) 
Internal Note 2003. 

[2] A. Guerrero et al., “CERN Front-end Software 
Architecture for accelerator controls”, 
ICALEPCS’03, Korea, October 2003.  

[3] K. Kostro et al., “Controls Middleware (CMW): 
Status and use”, ICALEPCS’03, Korea, October 
2003. 

[4] http://www.acqiris.com/Products/Digitizers/ 
[5] http://www.pickeringswitch.com 
[6] http://www.etherboot.org 
[7] http://www.redhat.com/software/rhel/ 
[8] http://otn.oracle.com/tech/java/oc4j/ 
[9] E. Roman et al., “Mastering Enterprise JavaBeans”, 

second edition, Wiley Computer Publishing, 2002. 
[10] http://h18004.www1.hp.com/products/ 
 servers/proliantdl380/ 

 

Proceedings of ICALEPCS2003, Gyeongju, Korea

361

http://h18004.www1.hp.com/products/

	OASIS: A NEW SYSTEM TO ACQUIRE AND DISPLAY THE ANALOG SIGNALS FOR LHC
	MOTIVATION
	GENERAL ARCHITECTURE
	FRONT-END TIER
	APPLICATION SERVER TIER
	APPLICATION TIER
	TEST RESULTS AND FUTURE
	REFERENCES


