
SYNOPTIC DISPLAY—A CLIENT-SERVER SYSTEM
FOR GRAPHICAL DATA REPRESENTATION

Timofei Bolshakov, Andrey Petrov, Sharon Lackey
Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, U.S.A.

Abstract Project Builder
Synoptic Display is a Java™ application for flexible

online graphical representation of data received from a
data acquisition system. It was designed as a part of
Fermilab’s Accelerator Applications Migration Project
[1]. Synoptic Display is considered to be the next
generation of such applications as ACNET Lexigraphics
and EPICS MEDM. Synoptic Display projects
(equivalents of MEDM screens) are rendered on major
web browsers (for monitoring purposes) or launched in a
web-startable console Java application (for both
monitoring and control). Small bandwidth (as low as 100–
1000 byte/sec) is required between client and server sides
due to usage of Scalable Vector Graphics (SVG) [2] for
data transfer. Synoptic Display components (data sources,
processing pipes, visualization widgets) can be
graphically arranged and logically interconnected in a
web-startable Project Builder. Projects are stored in a
server-side repository in XML format. A Runtime Project
Engine (RPE) handles user requests, downloads projects
from the repository, launches data acquisition jobs, and
generates SVG pictures. Servlets and Java Server Pages
(JSP) are used as RPE web tier. At present time, ACNET
Java Data Acquisition Engine is a primary data source for
the Synoptic Display, since this is the corporate Fermilab
standard; there are no limitations to create new types of
data sources. Projects home page is [3].

Project Builder is a client-side application dedicated to
create and modify Synoptic Display projects. It is a
special-purpose graphical editor that allows users to
define logical flows of information from data sources to
data consumers through data handlers and pipes. The
second function of the builder is definition of static visual
components, such as immutable lines, geometrical shapes,
and texts.

Project Builder works with Repository of Components
in order to get a description of atomic common-purpose
components. Projects are stored either in the Project
Repository or in local files.

Repositories of Components and Projects
Repositories of Components and Projects are server-

side program that keep and distribute Synoptic Display
projects and atomic project components among multiple
instances of the Project Builders and RPEs.

Runtime Project Engine
Runtime Project Engine is a central part of the system.

It downloads project XML files from the repository,
parses those files, creates a set of data acquisition jobs,
and builds the result image. RPE may be started either
locally, or on the server side. In the first case, the result is
rendered on a canvas of this application; otherwise an
additional client-side Project Viewer is required. Because
of security precautions, the system allows device settings
only if RPE is started locally inside a specific computer
subnetwork.

ARCHITECTURE

Web Tier and Project Viewer
If RPE resides on the server, the Web Tier, a set of

servlets and Java Server Pages (JSP), is employed to
convert result images to an appropriate graphic format
and pass them to the client-side Project Viewers. The
Project Viewer in most cases is an SVG plug-in for a web
browser.

Upon the first user request, Web Tier sends the full
SVG image to the client. This original image is cached on
both client and server. On all subsequent requests, Web
Tier sends just a difference between current image and the
previous one. Project viewer applies this difference to the
cached image and renders it. That way requires a
minimum bandwidth and eliminates visual blinking of the
picture.

Figure 1: Synoptic Display Architecture.

The system consists of five parts: (1) project builder,
(2) project viewer, (3) repository of components and
projects, (4) runtime project engine, and (5) a web tier.
The first two parts reside on the user’s PC. Repositories
are on the server side. RPE may be started either on the
client or on the server side.

At this time, SVG plug-ins for prevalent browsers are
provided free of charge by Adobe System, Inc. and Corel
Corporation, but unfortunately the availability is limited
for different platforms [4].

Proceedings of ICALEPCS2003, Gyeongju, Korea

368

If a SVG plug-in is unavailable for a given
configuration, Web Tier may generate JPEG or GIF
images. This requires a much higher bandwidth and
results in visible refreshing of the picture every few
seconds.

IMPLEMENTATION

Data Format
XML, Extensible Markup Language, has been chosen

as the format for Synoptic Display projects and
components. XML provides a handy way to keep, convey,
and process complex ordered data; it is
platform-independent, open, and human readable. In
general, projects can be created and modified without
Project Builder: for instance, by using custom software
for project generation, migration from another system, or
with a text editor. Thus, XML makes Runtime Project
Engine and Project Builder completely independent.

The format of a Synoptic Display project is given by
XML schema [5]. Briefly:

• Every project includes three types of components:
active components, passive components and links.
Active components can accept and produce data,
and each of them has a specific runtime
implementation. Passive components are
immutable SVG elements. Links are used to
define logical flows of data between active
components.

• Every active component may contain some set of
internal components (active, passive and links).
Projects themselves are active components.

• Every component has a set of properties. There is a
set of required properties for each type of
component. Every property has type, name, value,
and may have the default value. Currently
supported types are: double, integer, string,
boolean and color.

• Active components may have inputs and outputs.
For certain components the amount of inputs and
outputs may be changed at user discretion.

• A Java class responsible for the runtime
implementation must be specified for every active
component.

Project Builder
Project Builder is a graphical editor designed to create

and edit Synoptic Display Projects.
Builder’s graphical user interface is based on Swing

classes, however it has been found that the generic
behaviour of JComponent and successors differs very
much from the desired behaviour of Synoptic Display’s
atomic components (active, passive, and links) at design
time. A complex set of custom components has been
developed to implement specific operations of the
graphical editor. Virtually all operations which are usual
for graphical editors (except zoom operation, so far) are
supported. In addition, the Builder provides editing of a

component’s properties, operations with inputs/outputs
and logical links.

Since static components are described as Scalable
Vector Graphics elements, a custom SVG rendering
module is implemented. This module supports a subset of
SVG elements and commands, listed in [6]. The same
module is used by RPE to show the immutable lines,
shapes and texts.

The default set of atomic components is loaded from
the server-side repository every time at program startup to
be represented on the toolbar. Project Builder has a file
browser to load Synoptic Display projects from the
server-side repository, and to save them. In addition,
projects can be stored in local files.

Runtime Project Engine
Runtime Project Engine is an operational environment,

used to start Synoptic Display projects. The runtime
behaviour of the project is implemented by
RunTimePanel class, an extension of JComponent.
Though each kind of atomic components included in
project can have its own behaviuor, all of them implement
a RunTimeComponent interface, as follow:

public void init(Element root)
public ObjectPipe getSink(int i)
public void setSink(int i, ObjectPipe pipe)
public void start()
public void stop()

Here, ObjectPipe is an object pipe abstraction, Element

is a JDOM element [7].
Object pipe implementation classes are created by a

factory. Special data classes are travelling through those
pipes: TimedDouble, BunchOfTimedDouble,
TimedErrors, TimedInteger, and TimedBoolean.

During initialization of RunTimePanel all classes that
implement runtime behaviour of included components are
being instantiated using reflection and interconnected
with object pipes.

The existing set of components is divided into three
logical groups with different functionality. Each
individual component may belong to only one of these
groups:

• Data sources—system-dependent components
provide readings and settings for real physical
devices. At this time only ACNET data sources are
implemented. System independent test data
sources are provided, as well.

• Data processors provide conversions (i.e.,
expression-driven scaling), filtering, averaging,
consolidation, data streams distribution, etc.

• Visual components provide data visualization.
They are Numeric Display, Alarm Display,
bar charts, simulations of an oscilloscope, knobs,
thermometer, barrel with floating level of liquid,
gauge, etc.

Proceedings of ICALEPCS2003, Gyeongju, Korea

369

Web Tier
Web Tier is a set of servlets and Java Server Pages

deployed on the Tomcat Servlet Engine [8].
The heart of the Web Tier is a servlet responsible for

loading and launching of Synoptic Display projects. This
servlet considers the project as a JFrame with parameters.
After such a JFrame is instantiated, it is painted on
SVGGraphics, a custom extension of Graphics2D class.
SVGGraphics returns a SVG picture as a JDOM tree.
Depending on user request, the servlet sends to the client
either a zipped SVG document, or just a difference
between current SVG document and the previous one.
Usage of the differences for high level vector graphics
elements leads to very small network bandwidth. On the
client side, a short JavaScript code executed in a browser
requests those differences and updates the SVG DOM
tree inside a SVG plug-in with new values.

Another servlet implements access to the repository. It
supplies Project Builder and RPE with XML data of
projects and components.

A set of JSPs surrounds those two servlets in order to
provide the user interface.

CONCLUSION
At the current time, Synoptic Display provides a

complete solution to create, modify, store, and launch
data acquisition projects. An open, portable, and human
readable data format, based on XML, is used to convey
and store projects, components, and graphical data. The
central server-side repository is used to store common
component library and projects, that allows sharing of

data among multiple developers. Projects stored there
immediately become available for execution. The
graphical result is rendered on the client side using a web
browser with a SVG plug-in, and a very small software
installation is required.

Three main parts of the system: Project Builder,
Runtime Project Engine, and Web Tier can be used
independently. Web Tier can be easily rewritten to
support other types of JFrames. Runtime Project Engine
framework can be extended to meet specific user needs
(i.e., simulation) or in order to support different data
acquisition standards (i.e., EPICS or industrial SCADA
systems). Even all of the Runtime Engine classes can be
rewritten completely by other developers to provide
desired meaning to the XML project files. XML project
files can be generated from JSP pages—this approach was
used for the Slow Plot sub-project [9].

REFERENCES
[1] S. L. Lackey, F. X. Zhang , “Fermilab Accelerator

Applications Migration Project,” ICALEPCS’03,
Gyenongju, October 2003.

[2] http://www.w3.org/Graphics/SVG/
[3] http://www-bd.fnal.gov/synoptic/
[4] http://www-bd.fnal.gov/synoptic/doc/guide/

overview.html#2
[5] http://www-bd.fnal.gov/synoptic/schemas/project.xsd
[6] http://www-bd.fnal.gov/synoptic/doc/guide/svg.html
[7] http://www.jdom.org
[8] http://jakarta.apache.org/tomcat
[9] http://www-bd.fnal.gov/synoptic/SlowPlot4.html

Proceedings of ICALEPCS2003, Gyeongju, Korea

370

	SYNOPTIC DISPLAY—A CLIENT-SERVER SYSTEM�FOR GRAP�
	ARCHITECTURE
	Project Builder
	Repositories of Components and Projects
	Runtime Project Engine
	Web Tier and Project Viewer

	IMPLEMENTATION
	Data Format
	Project Builder
	Runtime Project Engine
	Web Tier

	CONCLUSION
	REFERENCES

