
EARLY CONTROL SYSTEM APPLICATIONS USING PDAS AT TRIUMF

J.J. Pon, E. Klassen, K.S. Lee, M.M. Mouat, T.M. Tateyama, P.J. Yogendran
TRIUMF, Vancouver, BC, Canada

Abstract
Several software applications are being developed that

use a personal digital assistant (PDA), a wireless Ethernet
infrastructure, and the Central Control System (CCS) of
TRIUMF's 500 MeV cyclotron. These applications are
primarily for use in the field rather than at a console and
allow for monitoring and controlling of cyclotron
parameters from a pocket-size appliance. This paper
describes the initial applications, the preferred form of
deployment, and the development environment. Also
discussed are several potential pitfalls that may arise from
the adoption of this technology.

INTRODUCTION
When a device in the cyclotron needs to be monitored

or controlled, operators can usually do it remotely from a
console. However, there are cases in which devices need
some form of local intervention but an X terminal is not
in close proximity. In situations like these, the standard
procedure is for an operator to stay in front of a console
and a second operator to walk over to where the device is
located. While the device is handled, the two operators
give each other feedback and support via two-way radio.

An early attempt at facilitating remote access was not
completely adequate. The objective was for the operator
to carry a laptop computer into the field, connect it to the
TRIUMF’s wireless network, operate on the device in
question and get feedback directly from the laptop. But
more often than not, devices are handled locally for a very
short time only. It is impractical to carry a heavy laptop
and wait several seconds for it to boot up and connect to
the network. This proposed solution was deemed to be
more inefficient than the problem itself.

With the recent emergence of personal digital assistants
(PDAs) capable of connecting wirelessly to an Ethernet
network, we are presented with another opportunity to
improve on field operations. As opposed to laptops, PDAs
are light, easy to carry, and boot up instantaneously. This
initiative is proposing direct interaction with cyclotron
devices through the handheld’s web browser [1]. In
essence, TRIUMF’s Central Control System (CCS) is
experimenting with a truly portable console for field
operations.

APPLICATION DEPLOYMENT
Several options for application deployment were

considered. They ranged from serving existing CCS
programs via X Window System to writing native PDA
programs. In the end, we chose the web server/client
model, where a web server delivers HTML and CGI script
applications to the PDA’s web browser: NetFront v3.0 [2].
NetFront gave us a very good first impression. It handles

fairly sophisticated web pages including those containing
tables, frames, cascading style sheets, and even JavaScript
code. In addition, the CCS already had a web server in
place and some staff members had previous experience
with web pages. In other words, the cost of prototyping a
web application for the PDA was affordable and could be
accomplished in a relatively short time. Incidentally, web
pages are extremely portable and can be deployed in a
multitude of platforms with little modification.

DEVELOPMENT ENVIRONMENT
Since this project is still in its infancy, we have tried to

keep the development environment as modest as possible.
For the most part, we made use of existing equipment and
kept exclusivity to a minimum.

Development Infrastructure
An existing HP AlphaServer DS10 system [3] running

OpenVMS is used as both a web server and also as a
development machine. Web server software is HP Secure
Web Server (CSWS) [4]. Editing is done using the
OpenVMS text editor EVE. Web pages are written in
HTML (with embedded JavaScript code when necessary).
CGI scripts are done in DEC command language (DCL)
or C. For debugging, we use Mozilla’s [5] JavaScript
console on a Windows 2000 computer. The only item
specifically acquired for this project was the Sony Clie
PEG-NX70V PDA [6] with wireless LAN card [7]. The
PDA runs Palm OS v5.0 [8] and we installed the web
browser that came with it: NetFront v3.0. The wireless
network in the CCS is using protocol 802.11b, also
known as Wi-Fi [9].

Development Cycle
First, an HTML page is typed up using EVE. To view

the HTML page properly, two style sheets are created:
One for NetFront and the other for PC-based web
browsers. We will eventually use more appropriate web
page developing tools, but for now it is all being done
with a simple text editor. Next, the page is invoked from
NetFront, Mozilla, and Internet Explorer to get an idea of
how the final product will look. Once satisfied with the
page layout, we create a CGI script, which when invoked
by a browser generates the HTML page dynamically. Our
original HTML page can now be discarded. If the script is
relatively simple, it is written in the form of a DCL
command procedure. Otherwise it is written in C. Since
our web applications display changing data, the web page
generated by the CGI script contains a command to call
itself every second or so to refresh the data. There is also
embedded JavaScript code in the page to select the right
style sheet based on the calling browser (see Fig. 1).

Proceedings of ICALEPCS2003, Gyeongju, Korea

383

view the html
 page layout

Access Point Web/CGI Server

CAMAC

make a CGI script to
 dynamically create
 the html page

edit a template html page
and cascading style sheets

Wireless PDA

 serve the CGI
script to the PDA

Figure 1: Development Cycle

Design Considerations Tank Levels and 1A Triplet Pressure
Screen size is the major design consideration when

developing applications for a PDA. It is a balancing act
trying to fit information in a single page as completely as
possible while still maintaining a reasonable level of
readability. Next, since we are dealing with dynamic data,
the page is refreshed at regular intervals. It is of no use to
create a scrollable page because the next refresh will
always bring up the top left corner of the page no matter
which part was being displayed. In addition, since we are
refreshing the same page continuously, the “Back” button
of the browser is rendered useless. Tapping on the “Back”
button would bring up an earlier version of the currently
displayed page. In short, our PDA web applications are
constrained to a very small, single, un-resizable, un-
scrollable window that, for all intents and purposes, will
not recall previous pages.

Adjusting tank pressure levels is another activity that
requires local manipulation away from a console. To
facilitate these field procedures, we are currently testing
two CGI-scripts: Tank Levels and 1A Triplet Pressure.
These applications display real-time water and gas
capping pressure levels on NetFront while an operator
works the valves. In the future, there will be no need for a
second operator to stay at the console and communicate
the readings to the field operator.

WRC
WRC is a project that is under initial development.

WRC stands for Web Remote Console and its purpose is
to replicate the behaviour of physical consoles. Unlike our
other programs that have been developed with a very
specific use in mind, WRC is a general-purpose web
application in which a user can select almost any device
in the CCS. WRC will not only display the current values
of a device, but will also let users send command actions
to it. Because of the ambitious requirements for WRC,
initial versions contained a lot of JavaScript code. This
has resulted in unacceptably long page loading times and
very slow response from NetFront.

INITIAL APPLICATIONS

Safety Monitors
On a weekly basis, an operator goes around the

TRIUMF site testing radiation monitors by bringing an
active source near them. In the past, a second operator
stayed at the console and would confirm that the monitor
was functioning properly. The PDA application SFMon
facilitates this routine. SFMon is a CGI script that
displays the current readings of safety monitors on
NetFront. Now, along with the source, a field operator
carries a PDA, calls up SFMon from NetFront and
records the values of the safety monitors without the need
for a second operator.

PROBLEM AREAS
We identified certain issues that need to be addressed

before running wireless applications in production mode.

Security and User Authentication
Until now, the existing login/password system in the

CCS has been a reasonable and adequate form of user
authentication. But when applications are invoked from a
stateless web browser environment, the issue of security
becomes more prevalent. Should we encode at the source,

Proceedings of ICALEPCS2003, Gyeongju, Korea

384

decode in the target, and authenticate every single request
coming from a browser? This would clearly take a toll on
performance. On the other hand, we cannot allow wide-
open access to the system for obvious reasons.

Wireless Issues
The following are just a few questions that we have yet

to fully address. What is the optimum location for a given
access point? If users wander away from the nearest base
station, how can they tell that their signal is weakening?
And if the signal is lost, how do we tell that data is stale
or that commands did not take effect?

Limitations of NetFront
With simple web applications, NetFront’s performance

far exceeded our expectations. But as our requirements
started getting more ambitious, we began recognizing a
few drawbacks. First, although NetFront can interpret
JavaScript, we found that it executes the code very
slowly. This could degrade overall performance of more
sophisticated web applications. As PDAs become faster,
hopefully this issue will be resolved. It is also unfortunate
that the browser does not support Java code. It would
have been nice to have Java applets in our web programs.
And Lastly, NetFront does not come with any debugging
tools at all. It is hard to find out what is wrong with a web
page that is not behaving as expected. In our case, the
work around has been to debug the page using Mozilla, a
PC-based web browser that offers adequate debugging
features.

Web Server Performance
Performance of the CSWS web server was markedly

different based on the type of document being served. We
noticed that the web server used a lot of CPU resources
when serving CGI scripts. The heavy load was not much
different whether the script was a DCL procedure or a C
program. On the other hand, the footprint of serving plain
HTML or text pages was barely noticeable. The lesson
here is to minimize the use of CGI scripts. Unfortunately,
when data on a page needs to be refreshed on a constant
basis, there is little choice but to invoke CGI scripts. With
only a few users to serve, big payloads from the web
server are still tolerable. But should CGI scripting become
too taxing on the CPU, we would need to look at other
ways of serving CGI like mod_perl [10] or FastCGI [11].

SUMMARY
The TRIUMF’s CCS has recently had the chance to

experiment with PDAs that can connect to the Ethernet
network wirelessly. This new technology has allowed us
to explore the possibility of deploying CCS applications
into a very small, highly portable device. Our choice of
application deployment was determined mainly by two
factors: Time and cost. We needed to come up with proof
of concept within reasonable time while at the same time
keeping the cost of training, development, hardware, and
software as economical as possible.

Currently, there are three applications that are being
field-tested. These programs display readback data of
devices like safety monitors and tank level gauges. They
provide a function that would normally require support
from a second operator. A fourth application, under initial
development, will allow field operators not only to read
data but also to send commands and control CCS devices.

A few problem areas have been identified. With the
proliferation of wireless technology, user authentication
and the overall issue of security have become more
prevalent. Also, there is a need for some kind of
mechanism to ensure that data and commands arrive at
their intended receivers in a safe and timely fashion. And
of course, we could always benefit from better performing
PDA browsers and more efficient methods of serving CGI
scripts.

REFERENCES
[1] J.J. Pon et al., “Preliminary Use of PDAs in

TRIUMF’s Central Control System”, these
proceedings.

[2] http://www.access-us-inc.com/products/cewb_nf.asp
[3] http://h18002.www1.hp.com/alphaserver/ds10/
[4] http://h71000.www7.hp.com/openvms/products/ips/

apache/csws.html
[5] http://www.mozilla.org/
[6] http://www.sonystyle.ca/commerce/servlet/

ProductDetailDisplay?storeId=10001&langId=-
1&catalogId=10001&productId=165023&navigation
Path=45520n45521

[7] http://www.sonystyle.ca/commerce/servlet/
ProductDetailDisplay?storeId=10001&langId=-
1&catalogId=10001&productId=167483&navigation
Path=45520n46100n46100

[8] http://www.palmsource.com/includes/palmos5.pdf
[9] http://www.wirelessethernet.org
[10] http://perl.apache.org/
[11] http://www.fastcgi.com/

Proceedings of ICALEPCS2003, Gyeongju, Korea

385

http://www.access-us-inc.com/products/cewb_nf.asp
http://h71000.www7.hp.com/openvms/products/
http://www.sonystyle.ca/commerce/servlet/
http://www.sonystyle.ca/commerce/servlet/

	EARLY CONTROL SYSTEM APPLICATIONS USING PDAS AT TRIUMF
	INTRODUCTION
	APPLICATION DEPLOYMENT
	DEVELOPMENT ENVIRONMENT
	Development Infrastructure
	Development Cycle
	Design Considerations

	INITIAL APPLICATIONS
	Safety Monitors
	Tank Levels and 1A Triplet Pressure
	WRC

	PROBLEM AREAS
	Security and User Authentication
	Wireless Issues
	Limitations of NetFront
	Web Server Performance

	SUMMARY
	REFERENCES

