
ASDEX UPGRADE CONTROL PARAMETER ORGANISATION AND
CONFIGURATION MANAGEMENT

G. Neu, K. Behler, R. Cole*, A. Lohs, K. Lüddecke*, G. Raupp, W. Treutterer, D. Zasche, Th.
Zehetbauer, and ASDEX Upgrade Team

Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748
Garching, Germany

* Unlimited Computer Systems, Seeshaupterstrasse 15, D-82393 Iffeldorf, Germany

Abstract
The AUG tokamak's plasma control and data

acquisition system runs a variety of realtime applications
(APs) to feedback control and monitor plasma properties

AP behaviour is governed by parameters which have to
be obtained from external data sources: files, relational
and object databases, or streams.

APs and parameter data sources may evolve
independently over time. We present a mapping
mechanism based on well-established web technology
that effectively decouples the two evolution paths.

INTRODUCTION
The new ASDEX Upgrade plasma control system is a

network of realtime controllers interconnected through
distributed shared memory. Possibly interdependent
application processes (APs) programmed in C++ can be
freely allocated onto controllers running under VxWorks
and interact by exchanging realtime signals [1]. The set of
all APs on the controller network forms a system release.

Currently the system release includes APs for:
• position & shape feedback
• density and impurity feedback
• coil load and current monitoring
• shape monitoring
• I/O

In a configuration phase prior to a discharge the APs

have to be supplied with specific parameters derived from
external data. Parameter data may have to be extracted
from various sources (Fig 1):

• files: e.g. gain matrices for position & shape

feedback obtained from modelling algorithms
• streams: e.g. limits for thyristor & coil currents

from the power supply PLCs
• databases: e.g. scales & offsets from peripheral

hardware devices (sensors, ADCs, …)

External data is organized in data sets whose structure

reflects that of hardware devices, physics model
algorithms, but not necessarily that of an AP. Data from
data sets may therefore have to be transformed (filtered,
sorted, aggregated) into the form required by the AP.

AP parameters may be numerous and complex.
Ensuring the integrity and validity of AP parameters can

be a demanding task, but is an essential for correct AP
operation.

Figure 1: Assembling parameters from various sources

Moreover, we have to account for evolution of data
sources and APs which do not necessarily occur in
parallel.

We therefore need:

• a description language for AP parameters
• a mechanism for validating AP parameters
• a mapping of data from sets onto AP parameters
• a robust implementation of the mapping

mechanism

SYSTEM EVOLUTION
System Release Evolution

A system release and thus the structure of parameters
required by its application processes may change over
time for many reasons:

• new APs are implemented to add functionality
• existing APs are replaced or enhanced for

improved performance
• APs are coalesced to reduce communication

overhead between them
• APs are split to allow parallel computation and

reduce execution time

Proceedings of ICALEPCS2003, Gyeongju, Korea

427

Switching between data sources then becomes
completely transparent to the APs. The APs request their
parameter data by identifying themselves to the server.
The parameter server returns a parameter sheet of an AP-
specific structure, which can be parsed, validated, and
used to instantiate the parameter objects for the AP during
the configuration phase.

The driving forces behind these changes are new views
on the control problem, the wish to implement new
algorithms in the control system, and performance
requirements.

Evolution of External Data Sources
Data sources and the data sets they provide also evolve:

XML • data previously available from a file is transferred
to a database, served from a new streaming device,
or vice-versa

To implement our parameter server and specify the
structure of parameter sheets we have opted for an XML-
based solution. • data sets are reorganized (divided, coalesced, …)
The advantages of using XML to describe documents
(such as AP parameter sheets) are obvious:

• new data sources are introduced
• new data sets adapted to changed experiment

conditions are computed
• standardised, human readable format
• possibility to formally describe document structure

and constraints
The driving forces here are the availability of new

devices, the reorganization of peripheral I/O hardware,
new physical models, testing, or the availability of new
media for data storage.

• availability of parsers for a variety of platforms
and programming languages

• availability of software for transforming into other
document types PARAMETER SERVER

• availability of validators based on numerous
description languages Decoupling through Parameter Server:

 Under the circumstances described above, keeping
system releases and data sources in sync and guaranteeing
the completeness an correctness of parameter data is far
from trivial.

We use XSD (XML schema definition [2]) to specify
the content structure of AP parameter sheets. XSDs can
be used to validate parameter sheets produced by the
parameter server (e.g. by using SUN's multi schema
validator) or generate specific editors which only allow
the creation of valid parameter sheets (e.g. for creating
test data sheets).

A good way of achieving the necessary decoupling is
by introducing a parameter server which provides a
uniform interface for the APs and performs the operations
necessary to compile the AP's parameter sheets. (Figure.
2) Apache Cocoon

A closer look reveals that the tasks of separating the
parameter sheet structure from that of data sets are similar
to those performed by web servers capable of delivering
document content in different forms (HTML, WML,
RTF, …)

Figure 2: Parameter server assembles a parameter sheet

From there it is a short step to attempt building the
parameter server around a web publishing framework
such as Apache's Cocoon [3].

Besides being freely available, Cocoon sums up
numerous advantages:

• open source
• highly flexible
• easily testable
• modular
• extendable
• platform independent: based on Java and XML

Cocoon implements the concepts of separation of

concerns (notably that of separating content from
presentation) around components and pipelines.
Components specialize on particular operations, and
pipelines interconnect them to form a processing chain
(Figure 3).

Proceedings of ICALEPCS2003, Gyeongju, Korea

428

Using Cocoon to set up a parameter server

An XML document is pushed through a pipeline, and
transformed in several steps. Every pipeline is identified
by a matcher, begins with a generator, continues with zero
or more transformers, and ends with a serializer:

Figure 3: Cocoon pipeline

The following steps are necessary to generate a
parameter server using Cocoon:

• Define a unique URI to identify each AP of a
system release

• Write a schema (XSD) for each APs parameter
sheet

• Write a matcher for each APs URIs in a system
release

• identify sources for AP parameters and write
generators and transformers to extract the relevant
values from the corresponding data sets.

• aggregate the results from the transformations
where needed

• use an XML serializer to create result parameter
sheets

• insert one pipeline declaration with the above
matchers generators, transformers, aggregators,
and serializers for each AP

• check the correct operation by validating the result
against the APs parameter sheet XSD and return
the parameter sheet to the AP over HTTP.

CREATING PARAMETER OBJECTS
FROM PARAMETER SHEETS

Matcher:

• entry point for selection of a pipeline: In our current implementation we have a specific parser
for each AP XSD, which parses parameter sheets, and
builds the parameter objects from them. This implies that
modification of an AP's parameter structure requires
manual adaptation of both the XSD against which
parameter sheets are checked, and the parameter sheet
parser itself.

• associates the uniform resource identifier (URI) of
a request with a specific pipeline of the sitemap

Generator:
• starting point for the pipeline
• delivers events, corresponding to XML elements

and attributes, down the pipeline
• example: FileGenerator: reads a local XML file

generates events and sends them down the pipeline
In future, however, we are planning to use a tool,

RogueWave's XML Object Link®, that generates
validating parsers directly from XSDs. Transformers:

• get events and transform them to other events
• examples: SQL Transformers for database access,

XSL [4] Transformers for adding information,
filtering, sorting, renaming, etc.

SUMMARY
We use proven public domain web technology to solve

the problem of creating a parameter server for an evolving
distributed realtime control system. The server fully
decouples evolution paths of application processes and
datasources for the AP's parameters. Specific parsers
instatiate parameter objects from the Cocoon-generated
datasheets.

Aggregator:
• gets results from several transformers and

concatenates them into a new event stream
Serialiser

• end of the pipeline
• transforms events into binary or character streams

for final client consumption REFERENCES
[1] W. Treutterer et al., "Software Structure and

Realtime Signal Exchange for the ASDEX Upgrade
Tokamak Control System", this conference

Cocoon comes with a set of ready-made matchers,
generators, transformers, and serializers. Additional
components can easily be defined and used in pipelines.

[2] http://www.w3.org/TR/xmlschema-0/ Components and pipelines are declared in an XML
configuration description from which a web server is
generated, the so-called sitemap. The sitemap allows to
use a construction kit-like approach. Existing components
can be hooked together without any required
programming.

[3] http://cocoon.apache.org/2.1/
[4] http://www.w3.org/TR/xslt20/

Proceedings of ICALEPCS2003, Gyeongju, Korea

429

	ASDEX UPGRADE CONTROL PARAMETER ORGANISATION AND CONFIGURATION MANAGEMENT
	INTRODUCTION
	SYSTEM EVOLUTION
	System Release Evolution
	Evolution of External Data Sources

	PARAMETER SERVER
	Decoupling through Parameter Server:
	XML
	Apache Cocoon
	Using Cocoon to set up a parameter server

	CREATING PARAMETER OBJECTS FROM PARAMETER SHEETS
	SUMMARY
	REFERENCES

