
INTEGRATION OF ABEANS AND ACS IN THE GSI CONTROLS 
ENVIRONMENT 

K. Höppner, G. Fröhlich, L. Hechler, U. Krause*, V. RW Schaa, GSI, Darmstadt, Germany 
I. Kriznar, M. Plesko, A. Pucelj, M. Sekoranja, I. Verstovsek, Cosylab, Ljubljana, Slovenia 

Abstract 
GSI will upgrade the control system in the near future 

and is therefore examining new technologies, such as the 
possibility to use CORBA middleware and Java on the 
client level. GSI has implemented UFC, the interface to 
the device server level, primarily on the OpenVMS 
operating system. For other platforms, a subset of UFC is 
available by a thin server that runs on an OpenVMS 
machine. Based on the Java interface to this server a 
proof-of-principle integration of Abeans and UFC 
libraries was demonstrated – the UFC Abeans plug. 
Abeans is a library that provides simple Java beans for 
connection with the control system. At the same time, it 
provides several useful services: logging, exception 
handling, configuration and data resource loaders, 
authentication, and policy management. In this article we 
will describe the details of the upgrade to Abeans and 
discuss possible further steps, including migration to a 
CORBA based middle layer, the Advanced Control 
System (ACS). ACS is a platform independent control 
system nucleus for writing servers based on an object-
oriented model of distributed devices. Like Abeans, ACS 
hides all details of the underlying mechanisms, which use 
many complex features of CORBA, queuing, 
asynchronous communication, thread pooling, life-cycle 
management, etc. 

INTRODUCTION 
The GSI accelerators are operated by a control system 

using VME computers on the device server level and 
OpenVMS workstations for the operator interface. Both 
layers communicate by a proprietary in-house protocol 
which is, on the client side, implemented for OpenVMS 
only. In addition, there is also one gateway server which 
translates UFC protocol to TCP/IP based communication. 

Devices are modeled in a unique way. This allows 
access to all devices by one common narrow interface.. 
Access to the device server level is by the name of the 
device and the name of the property to be executed. In the 
GSI control system about 65 different types of devices are 
supported. Each of it implements, besides several 
common ones, about 40 individual properties. A total of 
2870 properties are implemented in the GSI system. 

After 15 years of operation, GSI is in the process of 
modernizing its control system in hard and software [1]. 
Renovation includes the VME boards of the device server 
level too. The boards are no longer supported by the 
manufacturer and are not produced on the market any 
more. Replacement will be by a Linux based system (e.g. 

PowerPC). Switching to a powerful hardware, in 
combination with a comfortable operating system, allows 
upgrading from the in-house network protocol to CORBA 
communication. 

ABEANS ON UFC 
Abeans is the next generation of Cosylab’s Java based 

client framework for building control system applications. 
It has been ported, plugged to such different CS as those 
of DESY (TINE), SNS (EPICS) and GSI. Abeans consist 
of two parts, one are the connection and service beans and 
the other are GUI beans, called CosyBeans. Connection 
and service beans provide application services and the 
mechanisms that allow simple implementation of data 
flow between the local application and the remote control 
system. This task is realized in two layers. Firstly, Abeans 
define a model that is a layer of Java Beans components 
that represent controlled objects. Secondly, Abeans define 
a plug which is a driver layer, specific to a given model 
and an underlying communication system. In addition, 
Abeans provide several useful services: logging, 
exception handling, configuration and data resource 
loaders, authentication, and policy management. 
CosyBeans provide clear and consistent visualization of 
dynamic data with standardized presentation of alarms, 
monitors and connection status [2]. 

In November 2002, a proof of principle Abeans plug 
was created. The plug connected Abeans to the UFC 
layer. Abeans plug was connected to the gateway server 
via the TCP/IP protocol. At the moment, the plug only 
provides for read-only functionality. The next step is to 
extend the implementation of the UFC Abeans plug to 
provide all the functionality offered by the gateway 
server. 

GOING TO CORBA 
The process of upgrading UFC has now gone far 

enough that it is possible to go to the next step: For every 
device, a CORBA-object on the device server level will 
be created. This article discusses a possible approach by 
using ACS – a CORBA based system developed by 
Cosylab and ESO [3], currently used in ANKA light 
source and for the ALMA project. In the next section this 
approach is presented on a specific example of a GSI 
power supply. 

OO VIEW OF A POWER SUPPLY 
To illustrate the OO concepts in more detail, a GSI 

power supply for magnets was taken for prototyping as a 
representative example of a current GSI device. 

___________________________________________ 

*U.Krause@gsi.de 

Proceedings of ICALEPCS2003, Gyeongju, Korea

451



One of the major principles of object oriented (OO) 
design is abstraction: Each object can be described as a 
set of attributes (properties and characteristics) and 
actions. 

A more detailed analysis of object’s attributes reveals 
that attributes can be divided into three groups: 

• static attributes - attributes that do not change, e.g. 
minimum and maximum of the power supply’s 
current (MIN/MAX CURRENT), 

• attributes which change very rarely, e.g. version 
of the power supply (VERSION), 

• dynamic attributes – e.g. the current of a power 
supply (CURRENT). 

Besides attributes, objects also have actions that 
change object’s states, e.g. ON, OFF, RESET, INIT, 
ABORT. 

The existing integer property POWER was mapped to 
two actions, ON and OFF. Having POWER property and 
writing 0 and 1 does not follow OO design which should 
be as close as possible to the natural perception of the 
world – power supply magnet can simply be turned on 
and off. 

In addition, the execution of some actions can take 
quite a long time and this will make remote call to block 
which is often not the desired behavior. The problem can 
be solved using asynchronous communication (using 
Asynchronous Completion Token design pattern – an 
object behavioral design pattern for efficient 
asynchronous event handling). In this way, remote call is 
not blocked and the caller is notified about the completion 
of an action using a callback. 

Properties. All properties (dynamic attributes) are 
mapped to objects, so a component, i.e. modeled device, 
is a container for property objects. 

 

 
Figure 1: Component - property diagram. 

Properties itself contain characteristics, actions and 
other methods. Properties are strongly typed, e.g. double / 
long / string property, which enables compile-time 
checks and thus prevents errors. 

This approach is very powerful. For example, given a 
property object, e.g. current, you basically know 
everything about the property – obtaining information 
about the property and its manipulation is very trivial and 
simple. 

Characteristics. A characteristic is a data item that is 
considered static. It is represented by a name - value pair, 
where value parameter is typed. A characteristic is 
accessed through a single accessor method. 

Characteristics are contained both by components and by 
properties.  

A remote call that accesses a characteristic is 
synchronous, i.e. it blocks until the value is returned to 
the caller, because it is assumed that static values will be 
stored in a quickly accessible repository, e.g. in a static 
configuration database.  

MODEL_NAME or SERIAL_NUMBER of a power 
supply magnet can be considered as component 
characteristics and maxValue, minValue, units, resolution, 
alarmHighOn, alarmHighOff, etc. as property 
characteristics. 

Once the OO abstraction is completed, the mapping can 
be written in the Interface Definition Language (IDL), a 
meta language used to describe objects in CORBA. The 
next step is too looking at how to deploy these objects and 
how to provide all the services required by the control 
system, e.g. configuration database, naming service, 
logging, authentication, etc. 

PUTTING IT ALL TOGETHER 
In abstract terms, a control system can be viewed as a 

collection of services that enable the interaction between 
controlled entities (components) and the clients. 
Containers provide the environment for components to 
run in, with support for basic services like logging 
system, configuration database, persistency and security. 
ACS provides all the implementations of these services. 

 

 
Figure 2: Object explorer, a generic ACS application can 
be used to display and manipulate a GSI power supply. 

ACS has a so called Manager, which is set up at one 
central location that is known across the entire system. 
The Manager is acquainted with all the components and 
containers in the system, as well as other resources, such 
as configuration database and other services. It is a 
client’s entry point into the system and manages security 
and components lifecycle (instructing containers to 
activate / deactivate components). 

On top of the ACS device server layer run Abeans 
through the Abeans plug for ACS, used at ANKA and 
ESO. Figure 2 shows how a generic ACS application, the 

Proceedings of ICALEPCS2003, Gyeongju, Korea

452



Object Explorer, can be used to control a GSI power 
supply, the device chosen for prototyping. 

FURTHER STEPS 
The existing GSI control system cannot be skipped in 

short time, to make a smooth transition, the GSI control 
system and ACS have to be supported in parallel, both on 
the device server and the client application level – UFC 
and ACS applications must know how to connect both to 
new and to old devices. 

This section summarizes the discussions about possible 
further steps. The new control system will be CORBA 
based object oriented. Two possible approaches based on 
ACS seem feasible, the gateway and transitional IDL 
solution, both of them will be described in brief. It is 
beyond the scope of this article to decide for any of the 
solutions. 

Gateway solution. According to this scenario, the 
existing UFC TCP/IP server is enhanced to work as a 
translation server. UFC devices are exported as ACS 
servers and at the same the new devices are put on the 
UFC. Neither new nor old applications have to be 
changed in any way to communicate to all devices, 
regardless of the implementation. 

 

 
Figure 3: Transition solution with a gateway computer. 

Benefits: Old and new system do not have direct 
knowledge of each other, therefore no recompilation of 
any part of old system is needed. Yet all devices are 
available everywhere. ACS management tools and 
services (Object Explorer, Administration Client, logging 
and Logging Client) could be used on all devices. 

Drawbacks: A single gateway computer is a potential 
performance bottleneck therefore stress testing has to be 
performed. No automatic mapping will be possible in 
general, the majority of the 2870 implemented properties 
has to be handled individually. 

Supporting a set of nearly 3000 properties in 
centralized gateways can be avoided by integrating the 
mapping into the device servers. A narrow interface on 
the device objects which provides access by the old 
property names will allow a direct mapping of the old 
UFC interface to the new CORBA-UFC communication. 
The new interface can be implemented with limited effort 
since the majority of the device specific software on the 
actual VME boards can be re-used. During modernization 
of the GSI control system all devices will be equipped 

with the proposed CORBA-UFC interface. This can be 
the starting point of another approach: 

Transitional IDL. New Java clients use the Abeans 
interface to the control system and implement two types 
of connection: CORBA-UFC plug for old devices and 
ACS plug for new devices. To access newly installed ACS 
devices the CORBA-UFC interface has to be installed 
additionally. This can be done step by step, whenever a 
new ACS-device type is added to the GSI control 
environment. 

 

 
Figure 4: Transition solution with transitional IDL. 

Benefits: No connection overhead, clients and servers 
are connected directly. Additional functionality of the 
UFC plug in Abeans can be implemented quickly. 

Drawbacks: Old clients have to be at least partially 
recompiled. UFC protocol has to be implemented and 
maintained in many places: in the new ACS device server 
and in the Java clients. 

CONCLUSION 
In the article we have discussed a possible approach to 

the upgrade of the GSI control system, the main emphasis 
was on how to represent the existing devices in a OO way. 
In addition, some prototype solutions on an example of a 
GSI power supply are already implemented. The next step 
is to focus on one of the possible approaches outlined in 
the previous paragraph and start porting the entire CS to 
CORBA. 

REFERENCES 
[1] U. Krause, V. Schaa, L. Hechler, Re-engineering of the 

GSI control system, ICALEPCS 2001, San Jose, 
California, USA, November 2001. 

[2] Igor Verstovsek et al, Abeans: Application 
Development Framework for Java, ICALEPCS 2003, 
Gyeongju, Korea, October 2003. 

[3] Gianluca Gchiozzi et al, The ALMA Common 
Software (ACS): Status and Developments, 
ICALEPCS 2003, Gyeongju, Korea, October 2003. 

Proceedings of ICALEPCS2003, Gyeongju, Korea

453


	INTEGRATION OF ABEANS AND ACS IN THE GSI CONTROLS ENVIRONMENT
	INTRODUCTION
	ABEANS ON UFC
	GOING TO CORBA
	OO VIEW OF A POWER SUPPLY
	PUTTING IT ALL TOGETHER
	FURTHER STEPS
	CONCLUSION
	REFERENCES


