
A REFLECTION ON INTROSPECTION

M. Plesko, G. Tkacik*, Cosylab and J. Stefan Institute, Ljubljana, Slovenia

Abstract
In this article we present our specific solutions of

storing implicit knowledge about the control system in the
control system itself and utilizing it to create the so called
generic applications. We show an implementation of
Abeans that allows to move away from naming
conventions, channel and property lists and
documentation (i.e. implicit knowledge used by human
programmers) and rather stores that information digitally.
Generic applications can thus access it programatically
from code (i.e. what we call meta information). Those
applications require absolutely no code porting when used
at other control systems, because all system dependence is
parametrized in terms of different meta descriptions for
each system and managed by Abeans.

The goal of the project is to produce software common
to the majority of the communication systems (archivers,
browsers, multiple device displays, machine physics
applications) that are exactly the same irrespective of the
control system (i.e. CORBA ACS, TINE at DESY,
EPICS at SNS).

To this purpose, we have extensively studied the nature
of meta information and have developed the Abeans
Directory, which contains semantics and APIs to manage
meta data as part of our Abeans and CosyBeans
frameworks. This article describes the interplay of Java
Naming and Directory Interface (JNDI), meta descriptor
objects, specialized GUI components and strategies of
extraction of meta-information from the underlying
middleware communication systems (e.g. CORBA,
EPICS), that bring us closer to the dream of generic
applications.

As an example we discuss ArchiveReader, an
application produced in collaboration with DESY, which
employs the enumerated concepts to completely separate
the presentation of channel history data from the data
access. As Abeans Directory is implemented also in full
on EPICS and CORBA ACS platforms, the same
application will access their archives in addition to the
initially supported TINE and Abeans Simulator systems.
We believe that the specific example discussed here will
make the reflective concepts clearer and will facilitate
their faster adoption in the wide control system
community.

INTRODUCTION
This paper should be read as a follow-up article to [1],

where we, firstly, give a conceptual sketch of what meta-
information is; secondly, discuss the conditions for its
deployment in control systems; and lastly, briefly
demonstrate how a generic application uses it to learn
device structure during run-time. Building on that

foundation, we can now focus on two further issues. In
Section 2 we delve into some meta-data technicalities of
Abeans [2] meta-libraries that were, for the sake of
clarity, omitted in [1]. In Section 3 we show how the
meta-data mechanism can be used to parameterize not
only the basic controlled entities (e.g. devices, channels),
but system-wide services as well. In Section 4 we
conclude by pointing out directions for further research in
reflective control systems.

ABEANS META LIBRARIES

What Entities Do We Describe
Meta-libraries in Abeans encompass meta-data

collected from various sources (such as CORBA Interface
Repository, XML structure descriptions, hardcoded info),
rules for naming such information with Uniform Resource
Identifiers (URIs) and a meta-API for accessing it. While
running, meta-data are stored in a directory, called
distributed or Abeans directory – consequently standard
Java Naming and Directory Interface (JNDI) for
accessing entries given their hierarchical unique names
forms an integral part of Abeans meta-API.

Although we describe how services can be integrated
into such structure only in the next section, the ability to
integrate various data source descriptions (not only those
of remote devices, but also of distributed services and
local-virtual entities, for instance) was the major design
goal of Abeans meta-libraries. Notice that if we broaden
the scope of all describable data sources to include
entities beyond devices and channels, we face the
following two new issues:

A possible distributed nature of the data source. For
example, when offering access to a naming service or a
remote archive, both of these may be realized on multiple
remote machines. To protect the user from this (mainly
technical) detail, the meta-libraries do not expose it to the
application programmer, but have to manage it internally
to know where to look for data. This is, in other words,
the issue of federation.

A possible lack of expressive power in existing meta-
libraries. For example, getting archive data could be
functionally so radically different from physical device
data access that meta-API would fail to encapsulate it.

What Entities Do We Use for Description
As opposed to Section 2.1, where we talked about

Level 1 (as defined in [1]) content, we discuss Level 2
entities here, especially insofar they address the new
potential problems. In Abeans meta-API, Level 2 entities
are called descriptors and they are returned to the user
when s/he requests meta-information by name from the
directory. The canonical form of the interaction between
the user and meta-API is as follows: ___

 *E-mail: gasper.tkacik@cosylab.com

Proceedings of ICALEPCS2003, Gyeongju, Korea

454

Directory d = <obtain directory as Abeans service>
URI uri = new URI(“abeans-ACS://
server.ijs.si/linac/PSBEND_M.01”);
Descriptor desc = d.lookup(uri);
// examine desc to obtain info on PSBEND_M.01

Although the steps are not reproduced in full syntax,

they clearly show how the directory is to be used. The
names themselves are accessible for listing in the
directory: it is populated when Abeans plugs start up and
examine their specific name servers or object lists.

URI names
Without going into the details of URI specification [3],

we will stress the points where using URIs benefit Abeans
and potentially other control systems:
1. Maintenance: URI manipulation tools are freely

available (integral part of Java platform), reducing
parsing bugs.

2. Flexibility: not all URI parts must be present. In the
example above we reference “server.ijs.si”, because
supposedly another equally named object could have
existed on “alternate.ijs.si”. If there is a uniqueness
guarantee, the server name (formally URI authority
part) may be skipped and is understood by default.

3. Schema specification: prefix “abeans-ACS”
indicates that the data source being examined is in
ACS plug running on Abeans platform. “abeans-
archive” means that we are going to examine the
remote archive part of the Abeans directory. In
general, schema explicates the URI to such an extent
that no additional information is required to interpret
parts that follow (usually such information is implicit
and we provide it by passing the name to the object
that knows how to interpret the name).

4. Hierarchical part: apart from introducing hierarchy
in an obvious way (even that can be beneficial if
Abeans run on platforms that otherwise have flat
namespaces), the hierarchy can be used for
federation. In DESY, for example, there are different
archive servers that we would like to access
transparently. We introduce names such as “abeans-
archive://TINE/HERA”, “abeans-archive://TINE/
PETRA” etc. and leave it to the plug to do translation
from human-readable names “PETRA”, “HERA” into
the actual server names. In addition, all archive
servers now reside under common “abeans-
archive://TINE” directory and can be handled as a
group. [4]

5. Query part: although absent in the example, Abeans
interpret the query part as stating the kind of request
that should be invoked on the data source (see the
table of descriptor entities in Section 2.4 for details).

By using URIs, we can therefore name all physical
entities, virtual entities that exist only locally (e.g.
“abeans-archive” itself does not have a separate existence
on any machine, it is an Abeans construct) and data in
distributed services. Such URI name is by design

sufficient to uniquely parametrize Abeans request to any
target, and the corresponding response.

Descriptor entities
What are, then, the mysterious Descriptor objects from

the presented code snippet? They are simply subclasses of
a root Abeans descriptor class, implementing a number of
tagging interfaces. An application may examine
descriptors with instanceof operator to determine if any
particular tagging interface is implemented, and can react
accordingly [5] – some tagging interfaces actually also
declare methods, but not all of them. The following table
briefly summarizes major descriptor tags:
ConnectableRealization. If a descriptor is tagged as

being a connectable realization then the descriptor name
can be used in a name resolution process. In other words,
the name can be used to bind Abeans as a client to a
remote object, obtaining a remote object reference. This
describes CORBA or RMI (or any other) binding
capability of a given name.
LinkableRealization. If a descriptor is tagged as being

a linkable realization then the descriptor name cannot be
used in a name resolution process, but nevertheless the
named object will represent some resource allocation on a
remote machine. For example, a monitor on a current of a
power supply can be uniquely named by URI in Abeans
and thus has an entry in the directory. However, you
cannot bind to a monitor – you bind to a device and create
a monitor on its property. Linkable objects, for example,
represent monitors as transient resource allocations
created in response to a request and lasting for as long as
the request is active.
ClassRepresentable. If a descriptor is tagged as class

representable, this means that there exists a level 1 Java
Abeans class, which corresponds to a descriptor (level 2
entity in the directory). For example, a directory reports
that a power supply “PSBEND_M.01” contains a
“current” and “off”. “current” is class representable,
because Abeans have a modelling class DoubleProperty
through which the current can be controlled. “off” is not
class representable, because it is simply a method in
PowerSupply class.
DesignPatternRepresentable. If a descriptor is tagged

as design pattern representable, there is no level 1 Abeans
class that models the descriptor. Remember, there are
other possible level 1 representations in Java apart from
Java class: a method, a Java Beans property or event
source and so on. Although there is no class
representation, a request may be issued to such entity, for
example when “off” method of a power supply is
invoked.
NameContextRepresentable. If a descriptor is tagged

as a naming context representable entity, this means that
the name is just a level in hierarchy and that it can be
looked up as a directory and will contain a list of other
names. In URI abeans-
ACS://server.ijs.si/linac/PSBEND_M.01 “linac” is simply
a naming context representable entity with no remote

Proceedings of ICALEPCS2003, Gyeongju, Korea

455

function. Naming contexts are automatically name
context representable, but other entities may be as well.
RequestTarget. If a descriptor is tagged as request

target, this means that Abeans Engine request can be
directed to it. The request will be named by a full Abeans
URI name and will carry parameters, name-value pairs,
timeout data, error stack etc. A request is Abeans level 1
object, while Request Target that describes possible
requests for a given target is a level 2 entity. It contains
knowledge such as what types and number of parameters
must be provided, what kind of name-value pairs can be
put into the request, if the request will be timed, how
many responses will be generated and what kinds of data
they will carry and so on.

The described list of tagging interfaces is incomplete.
Nevertheless I hope that it shows how a generic
application can obtain enough information, by
interrogating descriptors, to build requests on the fly and
dispatch them through Abeans to the remote targets.
Moreover, the enumerated set of these level 2 entities is
generic enough to counter the second possible objection
in Section 2.1 concerning the expressive power of meta-
API.

GENERIC SERVICE APPLICATIONS
After being given the machinery of meta-API, the

design of a generic archive browser becomes a relatively
straightforward task. An archive is conceptually a set of
data points, indexed by name, time and (optionally) some
arbitrary index (if we archive sequences, for example).

We simply mirror the archive entry names into the
directory hierarchy itself. So, for instance, when a user
does a lookup on “abeans-archive://TINE/HERA”, the
directory will: 1) from schema and authority deduce that
it has to contact the Abeans archive service running in
TINE plug and forward the request there; 2) from
“HERA” part the TINE Abeans archive will deduce that it
has to contact the server corresponding to “HERA” and
return a list of archived channels. Notice that although the
name is uniform, each step in its resolution is actually
processed by a different Java (or even remote!) object
(namely the main directory, the TINE Abeans archive
service and the remote TINE archive).

A generic GUI tree component that knows how to
display JNDI trees will immediately know how to browse
our archive. Once the leaf node is identified, the directory
will return a specialized ArchiveDescriptor. This
descriptor implements some tagging interfaces and
contains methods that explain two remaining indexes,
namely index by time and arbitrary other index set. In
other words, the descriptor will tell us the time range,
delta time step, type of the stored data, if it is single-value
or array type, what are the additional indices and so on.

Because the structure of archive data is the same on
different machines in the sense that it is usually indexed
by similar procedures [6], we believe that an archive
reader can be made into a generic application.
ArchiveReader designed for DESY proves this concept

and shows even the same application accessing, at the
same time and in the same way, a TINE remote archive
and Abeans Simulator archive.

CONCLUSION
We believe that generic applications are possible,

because functionality of the control systems is
comparable. We are starting to prove this statement by
actually producing first generic applications. Work
remains to be done on several fronts: 1) improving GUI
presentation for both request construction – given meta-
data from the directory – and result display, especially by
storing also the preferred way of visualizing data into the
directory; 2) extending the role of the directory in data
exchange even between local (Abeans Java objects),
treating Abeans console logging service, for example, in
the same way as the remote archive service; 3) fine-tuning
of what data has to go into the descriptors and the ways of
putting it there, so that it can be used effectively by
applications; 4) putting additional subdirectories into
Abeans directory if needed; for example, a type directory
(as opposed to instance names directory), that would
describe if there are type-instance relationships present in
the underlying control system; or a virtual device
directory; and 5) extending list capability of the directory
to perform searches given a certain set of criteria.

REFERENCES
[1] M. Pleško, G. Tkačik, “Where and What Exactly is

»Knowledge« in Control Systems”, ICALEPCS 2003,
Gyeongju, October 2003

[2] I. Verstovsek et al, “Abeans: Application
Development Framework for Java”, ICALEPCS 2003,
Gyeongju, October 2003

[3] URI RFC specification
http://www.ietf.org/rfc/rfc2396.txt?number=2396

[4] This is only one approach to federation, because child
archive servers are independent. There may be other
federation scenarios, such as the presence of multiple
remote logging services (and logs have to be
forwarded to only one of them), or federation with
replicated data. We are still pursuing research in those
directions.

[5] The “tagging interface” approach is similarly used by
normal Java serialization mechanism, where
serializable classes implement java.io.Serializable,
although that does not bind them to implement any
actual function (it is just a design contract).

[6] Naturally, the implementations differ and it is up to
the plug to translate from the archive directory form to
a control-system specific form. However, this
translation happens in a well-defined (in terms of input
and output) piece of Java code in the plug and is
therefore maintainable.

Proceedings of ICALEPCS2003, Gyeongju, Korea

456

	A REFLECTION ON INTROSPECTION
	INTRODUCTION
	ABEANS META LIBRARIES
	What Entities Do We Describe
	What Entities Do We Use for Description
	URI names
	Descriptor entities

	GENERIC SERVICE APPLICATIONS
	CONCLUSION
	REFERENCES

